代码拉取完成,页面将自动刷新
import cv2
import os
import shutil
import pickle as pkl
import time
import numpy as np
import hashlib
class Logger(object):
def __init__(self):
self._logger = None
def init(self, logdir, name='log'):
if self._logger is None:
import logging
if not os.path.exists(logdir):
os.makedirs(logdir)
log_file = os.path.join(logdir, name)
if os.path.exists(log_file):
os.remove(log_file)
self._logger = logging.getLogger()
self._logger.setLevel('INFO')
fh = logging.FileHandler(log_file)
ch = logging.StreamHandler()
self._logger.addHandler(fh)
self._logger.addHandler(ch)
def info(self, str_info):
self.init('/tmp', 'tmp.log')
self._logger.info(str_info)
logger = Logger()
print = logger.info
def ensure_dir(path, erase=False):
if os.path.exists(path) and erase:
print("Removing old folder {}".format(path))
shutil.rmtree(path)
if not os.path.exists(path):
print("Creating folder {}".format(path))
os.makedirs(path)
def load_pickle(path):
begin_st = time.time()
with open(path, 'rb') as f:
print("Loading pickle object from {}".format(path))
v = pkl.load(f)
print("=> Done ({:.4f} s)".format(time.time() - begin_st))
return v
def dump_pickle(obj, path):
with open(path, 'wb') as f:
print("Dumping pickle object to {}".format(path))
pkl.dump(obj, f, protocol=pkl.HIGHEST_PROTOCOL)
def auto_select_gpu(mem_bound=500, utility_bound=0, gpus=(0, 1, 2, 3, 4, 5, 6, 7), num_gpu=1, selected_gpus=None):
import sys
import os
import subprocess
import re
import time
import numpy as np
if 'CUDA_VISIBLE_DEVCIES' in os.environ:
sys.exit(0)
if selected_gpus is None:
mem_trace = []
utility_trace = []
for i in range(5): # sample 5 times
info = subprocess.check_output('nvidia-smi', shell=True).decode('utf-8')
mem = [int(s[:-5]) for s in re.compile('\d+MiB\s/').findall(info)]
utility = [int(re.compile('\d+').findall(s)[0]) for s in re.compile('\d+%\s+Default').findall(info)]
mem_trace.append(mem)
utility_trace.append(utility)
time.sleep(0.1)
mem = np.mean(mem_trace, axis=0)
utility = np.mean(utility_trace, axis=0)
assert(len(mem) == len(utility))
nGPU = len(utility)
ideal_gpus = [i for i in range(nGPU) if mem[i] <= mem_bound and utility[i] <= utility_bound and i in gpus]
if len(ideal_gpus) < num_gpu:
print("No sufficient resource, available: {}, require {} gpu".format(ideal_gpus, num_gpu))
sys.exit(0)
else:
selected_gpus = list(map(str, ideal_gpus[:num_gpu]))
else:
selected_gpus = selected_gpus.split(',')
print("Setting GPU: {}".format(selected_gpus))
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(selected_gpus)
return selected_gpus
def expand_user(path):
return os.path.abspath(os.path.expanduser(path))
def model_snapshot(model, new_file, old_file=None, verbose=False):
from collections import OrderedDict
import torch
if isinstance(model, torch.nn.DataParallel):
model = model.module
if old_file and os.path.exists(expand_user(old_file)):
if verbose:
print("Removing old model {}".format(expand_user(old_file)))
os.remove(expand_user(old_file))
if verbose:
print("Saving model to {}".format(expand_user(new_file)))
state_dict = OrderedDict()
for k, v in model.state_dict().items():
if v.is_cuda:
v = v.cpu()
state_dict[k] = v
torch.save(state_dict, expand_user(new_file))
def load_lmdb(lmdb_file, n_records=None):
import lmdb
import numpy as np
lmdb_file = expand_user(lmdb_file)
if os.path.exists(lmdb_file):
data = []
env = lmdb.open(lmdb_file, readonly=True, max_readers=512)
with env.begin() as txn:
cursor = txn.cursor()
begin_st = time.time()
print("Loading lmdb file {} into memory".format(lmdb_file))
for key, value in cursor:
_, target, _ = key.decode('ascii').split(':')
target = int(target)
img = cv2.imdecode(np.fromstring(value, np.uint8), cv2.IMREAD_COLOR)
data.append((img, target))
if n_records is not None and len(data) >= n_records:
break
env.close()
print("=> Done ({:.4f} s)".format(time.time() - begin_st))
return data
else:
print("Not found lmdb file".format(lmdb_file))
def str2img(str_b):
return cv2.imdecode(np.fromstring(str_b, np.uint8), cv2.IMREAD_COLOR)
def img2str(img):
return cv2.imencode('.jpg', img)[1].tostring()
def md5(s):
m = hashlib.md5()
m.update(s)
return m.hexdigest()
def eval_model(model, ds, n_sample=None, ngpu=1, is_imagenet=False):
import tqdm
import torch
from torch import nn
from torch.autograd import Variable
class ModelWrapper(nn.Module):
def __init__(self, model):
super(ModelWrapper, self).__init__()
self.model = model
self.mean = [0.485, 0.456, 0.406]
self.std = [0.229, 0.224, 0.225]
def forward(self, input):
input.data.div_(255.)
input.data[:, 0, :, :].sub_(self.mean[0]).div_(self.std[0])
input.data[:, 1, :, :].sub_(self.mean[1]).div_(self.std[1])
input.data[:, 2, :, :].sub_(self.mean[2]).div_(self.std[2])
return self.model(input)
correct1, correct5 = 0, 0
n_passed = 0
if is_imagenet:
model = ModelWrapper(model)
model = model.eval()
model = torch.nn.DataParallel(model, device_ids=range(ngpu)).cuda()
n_sample = len(ds) if n_sample is None else n_sample
for idx, (data, target) in enumerate(tqdm.tqdm(ds, total=n_sample)):
n_passed += len(data)
data = Variable(torch.FloatTensor(data)).cuda()
indx_target = torch.LongTensor(target)
output = model(data)
bs = output.size(0)
idx_pred = output.data.sort(1, descending=True)[1]
idx_gt1 = indx_target.expand(1, bs).transpose_(0, 1)
idx_gt5 = idx_gt1.expand(bs, 5)
correct1 += idx_pred[:, :1].cpu().eq(idx_gt1).sum()
correct5 += idx_pred[:, :5].cpu().eq(idx_gt5).sum()
if idx >= n_sample - 1:
break
acc1 = correct1 * 1.0 / n_passed
acc5 = correct5 * 1.0 / n_passed
return acc1, acc5
def load_state_dict(model, model_urls, model_root):
from torch.utils import model_zoo
from torch import nn
import re
from collections import OrderedDict
own_state_old = model.state_dict()
own_state = OrderedDict() # remove all 'group' string
for k, v in own_state_old.items():
k = re.sub('group\d+\.', '', k)
own_state[k] = v
state_dict = model_zoo.load_url(model_urls, model_root)
for name, param in state_dict.items():
if name not in own_state:
print(own_state.keys())
raise KeyError('unexpected key "{}" in state_dict'
.format(name))
if isinstance(param, nn.Parameter):
# backwards compatibility for serialized parameters
param = param.data
own_state[name].copy_(param)
missing = set(own_state.keys()) - set(state_dict.keys())
no_use = set(state_dict.keys()) - set(own_state.keys())
if len(no_use) > 0:
raise KeyError('some keys are not used: "{}"'.format(no_use))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。