代码拉取完成,页面将自动刷新
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
# from tensorboardX import SummaryWriter
class hswish(nn.Module):
def forward(self, x):
out = x * F.relu6(x + 3, inplace=True) / 6
return out
class hsigmoid(nn.Module):
def forward(self, x):
out = F.relu6(x + 3, inplace=True) / 6
return out
class SeModule(nn.Module):
def __init__(self, in_size, reduction=4):
super(SeModule, self).__init__()
self.se = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_size, in_size // reduction, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(in_size // reduction),
nn.ReLU(inplace=True),
nn.Conv2d(in_size // reduction, in_size, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(in_size),
hsigmoid()
)
def forward(self, x):
return x * self.se(x)
class Block(nn.Module):
'''expand + depthwise + pointwise'''
def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride):
super(Block, self).__init__()
self.stride = stride
self.se = semodule
self.conv1 = nn.Conv2d(in_size, expand_size, kernel_size=1, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(expand_size)
self.nolinear1 = nolinear
self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, groups=expand_size, bias=False)
self.bn2 = nn.BatchNorm2d(expand_size)
self.nolinear2 = nolinear
self.conv3 = nn.Conv2d(expand_size, out_size, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(out_size)
self.shortcut = nn.Sequential()
if stride == 1 and in_size != out_size:
self.shortcut = nn.Sequential(
nn.Conv2d(in_size, out_size, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_size),
)
def forward(self, x):
out = self.nolinear1(self.bn1(self.conv1(x)))
out = self.nolinear2(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
if self.se != None:
out = self.se(out)
out = out + self.shortcut(x) if self.stride==1 else out
return out
class MobileNetV3_Large(nn.Module):
def __init__(self):
super(MobileNetV3_Large, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.hs1 = hswish()
self.bneck1 = nn.Sequential(
Block(3, 16, 16, 16, nn.ReLU(inplace=True), None, 1),
Block(3, 16, 64, 24, nn.ReLU(inplace=True), None, 2),
Block(3, 24, 72, 24, nn.ReLU(inplace=True), None, 1),
nn.Conv2d(24, 72, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(72),
nn.ReLU(inplace=True),
) # 1 72 128 128
self.bneck2 = nn.Sequential(
nn.Conv2d(72, 72, kernel_size=5, stride=2, padding=2, groups=72, bias=False),
nn.BatchNorm2d(72),
nn.ReLU(inplace=True),
nn.Conv2d(72, 40, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(40),
SeModule(40),
Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1),
Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1),
nn.Conv2d(40, 240, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(240),
hswish(),
) # 1 240 64 64
self.bneck3 = nn.Sequential(
nn.Conv2d(240, 240, kernel_size=3, stride=2, padding=1, groups=240, bias=False),
nn.BatchNorm2d(240),
hswish(),
nn.Conv2d(240, 80, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(80),
Block(3, 80, 200, 80, hswish(), None, 1),
Block(3, 80, 184, 80, hswish(), None, 1),
Block(3, 80, 184, 80, hswish(), None, 1),
Block(3, 80, 480, 112, hswish(), SeModule(112), 1),
Block(3, 112, 672, 112, hswish(), SeModule(112), 1),
Block(5, 112, 672, 160, hswish(), SeModule(160), 1),
nn.Conv2d(160, 672, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(672),
hswish(),
) # 1 672 32 32
self.bneck4 = nn.Sequential(
nn.Conv2d(672, 672, kernel_size=5, stride=2, padding=2, groups=672, bias=False),
nn.BatchNorm2d(672),
hswish(),
nn.Conv2d(672, 160, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(160),
SeModule(160),
Block(5, 160, 960, 160, hswish(), SeModule(160), 1),
) # 1 160 16 16
self.conv2 = nn.Conv2d(160, 960, kernel_size=1, stride=1, padding=0, bias=False)
self.bn2 = nn.BatchNorm2d(960)
self.hs2 = hswish()
self.conv3 = nn.Conv2d(960, 640, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(640)
self.linear = nn.ReLU(inplace=True)
self.init_params()
def init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=0.001)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
out = self.hs1(self.bn1(self.conv1(x)))
# print(out.shape) torch.Size([2, 16, 256, 256])
out1 = self.bneck1(out)
# print(out1.shape) torch.Size([2, 72, 128, 128]) up
out2 = self.bneck2(out1)
# print(out2.shape) torch.Size([2, 240, 64, 64]) up
out3 = self.bneck3(out2)
# print(out3.shape) torch.Size([2, 672, 32, 32]) up
out = self.bneck4(out3)
# print(out4.shape) torch.Size([2, 160, 16, 16])
out = self.hs2(self.bn2(self.conv2(out)))
# print(out.shape) torch.Size([2, 960, 16, 16]) up
out = self.linear(self.bn3(self.conv3(out)))
# print(out.shape) torch.Size([2, 640, 16, 16])
return out ,out1,out2,out3,
class merge(nn.Module):
def __init__(self):
super(merge, self).__init__()
self.conv1 = nn.Conv2d(1312, 320, 1)
self.bn1 = nn.BatchNorm2d(320)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2d(320, 320, 3, padding=1)
self.bn2 = nn.BatchNorm2d(320)
self.relu2 = nn.ReLU()
self.conv3 = nn.Conv2d(560, 160, 1)
self.bn3 = nn.BatchNorm2d(160)
self.relu3 = nn.ReLU()
self.conv4 = nn.Conv2d(160, 160, 3, padding=1)
self.bn4 = nn.BatchNorm2d(160)
self.relu4 = nn.ReLU()
self.conv5 = nn.Conv2d(232, 128, 1)
self.bn5 = nn.BatchNorm2d(128)
self.relu5 = nn.ReLU()
self.conv6 = nn.Conv2d(128, 128, 3, padding=1)
self.bn6 = nn.BatchNorm2d(128)
self.relu6 = nn.ReLU()
# self.conv7 = nn.Conv2d(32, 32, 3, padding=1)
# self.bn7 = nn.BatchNorm2d(32)
# self.relu7 = nn.ReLU()
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x,x1,x2,x3):
# print(x.shape) 1 640 16 16
y = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
# print(y.shape) 1 640 32 32
y = torch.cat((y, x3), 1) # 1 1312 32 32
y = self.relu1(self.bn1(self.conv1(y)))
y = self.relu2(self.bn2(self.conv2(y))) # 1 320 32 32
y = F.interpolate(y, scale_factor=2, mode='bilinear', align_corners=True) #1 320 64 64
y = torch.cat((y, x2), 1) #1 560 64 64
y = self.relu3(self.bn3(self.conv3(y)))
y = self.relu4(self.bn4(self.conv4(y))) # 1 160 64 64
y = F.interpolate(y, scale_factor=2, mode='bilinear', align_corners=True) #1 160 128 128
y = torch.cat((y, x1), 1) # 1 232 128 128
y = self.relu5(self.bn5(self.conv5(y)))
y = self.relu6(self.bn6(self.conv6(y))) # 1 128 128 128
# y = self.relu7(self.bn7(self.conv7(y)))
return y
class output(nn.Module):
def __init__(self):
super(output, self).__init__()
self.conv1 = nn.Conv2d(128, 1, 1)
self.conv2 = nn.Conv2d(128, 2, 1)
self.conv3 = nn.Conv2d(128, 4, 1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
inside_score = self.conv1(x)
side_v_code = self.conv2(x)
side_v_coord = self.conv3(x)
east_detect = torch.cat((inside_score, side_v_code,side_v_coord), 1)
return east_detect
class EAST(nn.Module):
def __init__(self):
super(EAST, self).__init__()
self.extractor = MobileNetV3_Large()
self.merge = merge()
self.output = output()
def forward(self, x):
x,x1,x2,x3=self.extractor(x)
return self.output(self.merge(x,x1,x2,x3))
if __name__ == '__main__':
m = EAST()
# x = torch.randn(1, 3, 512, 512)
# with SummaryWriter(comment='mobilenetv3') as w:
# w.add_graph(m, (x,))
# east_detect= m(x)
# print(east_detect.shape)
print(m)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。