代码拉取完成,页面将自动刷新
import json
from jsonargparse import ArgumentParser, ActionConfigFile
import yaml
from typing import List, Dict
import glob
import os
import pathlib
import pdb
import subprocess
import copy
from io import StringIO
from collections import defaultdict
import torch
from spacy.tokenizer import Tokenizer
from spacy.lang.en import English
from einops import rearrange
import logging
from tqdm import tqdm
import matplotlib
from matplotlib import pyplot as plt
import matplotlib.patches as patches
from matplotlib import gridspec
import numpy as np
import torch.autograd.profiler as profiler
from torch.nn import functional as F
from torch.optim.lr_scheduler import StepLR
from allennlp.training.scheduler import Scheduler
from allennlp.training.learning_rate_schedulers import NoamLR
import pandas as pd
from transformer import TransformerEncoder, ResidualTransformerEncoder, image_to_tiles, tiles_to_image
from metrics import MSEMetric, AccuracyMetric, F1Metric
from language_embedders import RandomEmbedder, GloveEmbedder, BERTEmbedder
from navigation_data import NavigationDatasetReader, NavigationImageTrajectory, configure_parser
from train_language_encoder import get_free_gpu, load_data, get_vocab, LanguageTrainer, FlatLanguageTrainer
from navigation_transformer import NavigationTransformerEncoder
from train_transformer import TransformerTrainer
logger = logging.getLogger(__name__)
class NavigationTransformerTrainer(TransformerTrainer):
def __init__(self,
dataset_reader: NavigationDatasetReader,
encoder: TransformerEncoder,
optimizer: torch.optim.Optimizer,
scheduler: Scheduler,
num_epochs: int,
num_blocks: int,
device: torch.device,
checkpoint_dir: str,
num_models_to_keep: int,
generate_after_n: int,
resolution: int = 64,
patch_size: int = 8,
block_size: int = 4,
batch_size: int = 16,
output_type: str = "per-pixel",
checkpoint_every: int = 64,
validation_limit: int = 16,
depth: int = 7,
score_type: str = "acc",
best_epoch: int = -1,
seed: int = 12,
zero_weight: float = 0.05,
debug_image_top_k: int = None,
debug_image_threshold: float = None):
super(NavigationTransformerTrainer, self).__init__(train_data=[],
val_data=[],
encoder=encoder,
optimizer=optimizer,
scheduler=scheduler,
num_epochs=num_epochs,
num_blocks=num_blocks,
device=device,
checkpoint_dir=checkpoint_dir,
num_models_to_keep=num_models_to_keep,
generate_after_n=generate_after_n,
score_type=score_type,
patch_size=patch_size,
block_size=block_size,
output_type=output_type,
resolution=resolution,
depth=depth,
best_epoch=best_epoch,
seed=seed,
zero_weight=zero_weight)
self.f1_metric = F1Metric()
self.dataset_reader = dataset_reader
self.batch_size = batch_size
self.checkpoint_every = checkpoint_every
self.validation_limit = validation_limit
if debug_image_top_k < 0:
debug_image_top_k = None
if debug_image_threshold < 0:
debug_image_threshold = None
self.debug_image_top_k = debug_image_top_k
self.debug_image_threshold = debug_image_threshold
def split_large_batch(self, batch):
large_bsz = batch['path_state'].shape[0]
small_batches = []
for i in range(0, large_bsz, self.batch_size):
small_batch = {}
for k in batch.keys():
small_batch[k] = batch[k][i:i+self.batch_size]
small_batches.append(small_batch)
return small_batches
def validate_one_epoch(self, epoch, step, validation_limit):
print(f"Validating epoch {epoch} step {step}...")
total_prev_acc, total_next_acc = 0.0, 0.0
total = 0
self.encoder.eval()
for b, dev_batch_instance in enumerate(self.dataset_reader.read("dev", validation_limit)):
actual_batches = self.split_large_batch(dev_batch_instance)
for small_batch in actual_batches:
score_dict = self.validate(small_batch, epoch, b, 0)
total_next_acc += score_dict['next_f1']
total += 1
mean_next_acc = total_next_acc / total
return mean_next_acc
def evaluate(self):
total_acc = 0.0
total = 0
total_block_acc = 0.0
self.encoder.eval()
for b, dev_batch_instance in tqdm(enumerate(self.dataset_reader.read("dev", self.validation_limit))):
actual_batches = self.split_large_batch(dev_batch_instance)
for small_batch in actual_batches:
score_dict = self.validate(small_batch, 10, b, 0, self.debug_image_top_k, self.debug_image_threshold)
total_acc += score_dict['next_f1']
total += 1
mean_acc = total_acc / total
print(f"Test-time pixel acc {mean_acc * 100}")
return mean_acc
def train_and_validate_one_epoch(self, epoch):
print(f"Training epoch {epoch}...")
self.encoder.train()
skipped = 0
step = 0
for b, batch_instance in enumerate(self.dataset_reader.read("train")):
actual_batches = self.split_large_batch(batch_instance)
for sb, small_batch in enumerate(actual_batches):
is_best = False
self.optimizer.zero_grad()
outputs = self.encoder(small_batch)
# skip bad examples
if outputs is None:
skipped += 1
continue
loss = self.compute_patch_loss(small_batch, outputs, self.next_to_prev_weight)
loss.backward()
self.optimizer.step()
it = (epoch + 1) * (step+1)
self.scheduler.step_batch(it)
#print(f"step: {step+1} checkpoint_every: {self.checkpoint_every} {(step +1) % self.checkpoint_every}")
if (step+1) % self.checkpoint_every == 0:
step_acc = self.validate_one_epoch(epoch, step, self.validation_limit)
print(f"Epoch {epoch} step {step} has next pixel F1 {step_acc * 100:.2f}")
if step_acc > self.best_score:
is_best = True
self.best_score = step_acc
self.save_model(f"{epoch}_{step}", is_best)
step += 1
print(f"skipped {skipped} examples")
epoch_acc = self.validate_one_epoch(epoch, step, 10 * self.validation_limit)
print(f"Epoch {epoch} has next pixel F1 {epoch_acc * 100:.2f}")
if self.score_type == "acc":
return (epoch_acc)/2, -1.0
else:
raise AssertionError(f"invalid score type {self.score_type}")
def compute_patch_loss(self, inputs, outputs, next_to_prev_weight = [1.0, 1.0]):
"""
compute per-patch for each patch
"""
bsz, w, h, __ = inputs['input_image'].shape
pred_next_image = outputs["next_position"]
path_state = inputs['path_state'].reshape(bsz, 1, w, h).float()
true_next_image = image_to_tiles(path_state, self.patch_size)
# binarize patches
next_sum_image = torch.sum(true_next_image, dim = 2, keepdim=True)
next_patches = torch.zeros_like(next_sum_image)
# any patch that has a 1 pixel in it gets 1
next_patches[next_sum_image != 0] = 1
pred_next_image = pred_next_image.squeeze(-1)
next_patches = next_patches.squeeze(-1).to(self.device).long()
pred_next_image = rearrange(pred_next_image, 'b n c -> b c n')
next_pixel_loss = self.weighted_xent_loss_fxn(pred_next_image, next_patches)
total_loss = next_pixel_loss
print(f"loss {total_loss.item()}")
return total_loss
def generate_debugging_image(self,
true_img,
path_state,
pred_path,
out_path,
caption = None,
top_k = None,
threshold = None):
caption = self.wrap_caption(caption)
fig, ax = plt.subplots(2,2, figsize=(16,16))
# gs = gridspec.GridSpec(2, 2, width_ratios=[2, 1])
text_ax = ax[0,1]
text_ax.axis([0, 1, 0, 1])
text_ax.text(0.2, 0.02, caption, fontsize = 12)
text_ax.axis("off")
props = dict(boxstyle='round',
facecolor='wheat', alpha=0.5)
text_ax.text(0.05, 0.95, caption, wrap=True, fontsize=14,
verticalalignment='top', bbox=props)
# img_ax = plt.subplot(gs[2])
img_ax = ax[1,0]
#w = int(40 * (self.resolution / 224))
true_img = true_img.detach().cpu().numpy().astype(float)[:,:,0:3]
img_ax.imshow(true_img)
true_path = path_state.detach().numpy()
true_path = np.tile(true_path.reshape(512, 512, 1), (1,1,3)).astype(float)
true_ax = ax[0,0]
true_ax.imshow(true_path)
pred_path = torch.softmax(pred_path, dim=0)
pred_path = pred_path[1,:,:]
pred_path = pred_path.cpu().detach().numpy().reshape(512, 512, 1)
if top_k is not None:
top_k_inds = np.argpartition(pred_path, -top_k, axis=None)[-top_k:]
top_k_inds = np.unravel_index(top_k_inds, shape = (512, 512))
pred_path[top_k_inds] = 1.1
pred_path[pred_path<1.0] = 0
pred_path[top_k_inds] = 1.0
elif threshold is not None:
pred_path[pred_path < threshold] = 0
else:
pred_path = pred_path
pred_path = np.tile(pred_path, (1,1,3)).astype(float)
pred_ax = ax[1,1]
pred_ax.imshow(pred_path)
file_path = f"{out_path}.png"
print(f"saving to {file_path}")
plt.savefig(file_path)
plt.close()
def validate(self, batch_instance, epoch_num, batch_num, instance_num, top_k, threshold):
self.encoder.eval()
outputs = self.encoder(batch_instance)
next_position = outputs['next_position']
next_position = tiles_to_image(next_position, self.patch_size, output_type="per-patch", upsample=True)
# f1 metric
next_p, next_r, next_f1 = self.f1_metric.compute_f1(batch_instance["path_state"].unsqueeze(-1), next_position)
if epoch_num > self.generate_after_n:
for i in range(outputs["next_position"].shape[0]):
output_path = self.checkpoint_dir.joinpath(f"batch_{batch_num}").joinpath(f"instance_{i}")
output_path.mkdir(parents = True, exist_ok=True)
command = batch_instance["command"][i]
command = [x for x in command if x != "<PAD>"]
command = " ".join(command)
image = batch_instance['input_image'][i]
path_state = batch_instance["path_state"][i]
pred_path = next_position[i]
self.generate_debugging_image(image,
path_state,
pred_path,
output_path,
caption = command,
top_k = top_k,
threshold = threshold)
return {"next_f1": next_f1}
def compute_f1(self, true_pos, pred_pos):
eps = 1e-8
values, pred_pixels = torch.max(pred_pos, dim=1)
gold_pixels = true_pos
pred_pixels = pred_pixels.unsqueeze(1)
pred_pixels = pred_pixels.detach().cpu().float()
gold_pixels = gold_pixels.detach().cpu().float()
total_pixels = sum(pred_pixels.shape)
true_pos = torch.sum(pred_pixels * gold_pixels).item()
true_neg = torch.sum((1-pred_pixels) * (1 - gold_pixels)).item()
false_pos = torch.sum(pred_pixels * (1 - gold_pixels)).item()
false_neg = torch.sum((1-pred_pixels) * gold_pixels).item()
precision = true_pos / (true_pos + false_pos + eps)
recall = true_pos / (true_pos + false_neg + eps)
f1 = 2 * (precision * recall) / (precision + recall + eps)
return precision, recall, f1
def main(args):
device = "cpu"
if args.cuda is not None:
free_gpu_id = get_free_gpu()
if free_gpu_id > -1:
device = f"cuda:{free_gpu_id}"
#device = "cuda:0"
device = torch.device(device)
print(f"On device {device}")
#test = torch.ones((1))
#test = test.to(device)
nlp = English()
tokenizer = Tokenizer(nlp.vocab)
dataset_reader = NavigationDatasetReader(dir = args.data_dir,
out_path = args.out_path,
path_width = args.path_width,
read_limit = args.read_limit,
batch_size = args.batch_size,
max_len = args.max_len,
tokenizer = tokenizer,
shuffle = args.shuffle,
overfit = args.overfit,
is_bert = "bert" in args.embedder)
checkpoint_dir = pathlib.Path(args.checkpoint_dir)
if not checkpoint_dir.exists():
checkpoint_dir.mkdir()
if not args.test:
with open(dataset_reader.path_dict['train'].joinpath("vocab.json")) as f1:
train_vocab = json.load(f1)
with open(checkpoint_dir.joinpath("vocab.json"), "w") as f1:
json.dump(list(train_vocab), f1)
else:
print(f"Reading vocab from {checkpoint_dir}")
with open(checkpoint_dir.joinpath("vocab.json")) as f1:
train_vocab = json.load(f1)
print(f"got data")
# construct the vocab and tokenizer
print(f"constructing model...")
# get the embedder from args
if args.embedder == "random":
embedder = RandomEmbedder(tokenizer, train_vocab, args.embedding_dim, trainable=True)
elif args.embedder == "glove":
embedder = GloveEmbedder(tokenizer, train_vocab, args.embedding_file, args.embedding_dim, trainable=True)
elif args.embedder.startswith("bert"):
embedder = BERTEmbedder(model_name = args.embedder, max_seq_len = args.max_len)
else:
raise NotImplementedError(f"No embedder {args.embedder}")
depth = 1
encoder_cls = NavigationTransformerEncoder
encoder_kwargs = dict(image_size = args.resolution,
patch_size = args.patch_size,
language_embedder = embedder,
n_layers = args.n_layers,
channels = args.channels,
n_heads = args.n_heads,
hidden_dim = args.hidden_dim,
ff_dim = args.ff_dim,
dropout = args.dropout,
embed_dropout = args.embed_dropout,
output_type = args.output_type,
positional_encoding_type = args.pos_encoding_type,
device = device,
log_weights = args.test,
locality_mask = args.locality_mask,
locality_neighborhood = args.locality_neighborhood,
init_scale = args.init_scale)
# Initialize encoder
encoder = encoder_cls(**encoder_kwargs)
if args.cuda is not None:
encoder = encoder.cuda(device)
print(encoder)
# construct optimizer
optimizer = torch.optim.Adam(encoder.parameters(), lr=args.learn_rate)
# scheduler
scheduler = NoamLR(optimizer, model_size = args.hidden_dim, warmup_steps = args.warmup, factor = args.lr_factor)
best_epoch = -1
block_size = int((args.resolution * 4)/64)
if not args.test:
if not args.resume:
try:
os.mkdir(args.checkpoint_dir)
except FileExistsError:
# file exists
try:
assert(len(glob.glob(os.path.join(args.checkpoint_dir, "*.th"))) == 0)
except AssertionError:
raise AssertionError(f"Output directory {args.checkpoint_dir} non-empty, will not overwrite!")
else:
# resume from pre-trained
encoder = encoder.to("cpu")
state_dict = torch.load(pathlib.Path(args.checkpoint_dir).joinpath("best.th"), map_location='cpu')
encoder.load_state_dict(state_dict, strict=True)
encoder = encoder.cuda(device)
# get training info
best_checkpoint_data = json.load(open(pathlib.Path(args.checkpoint_dir).joinpath("best_training_state.json")))
print(f"best_checkpoint_data {best_checkpoint_data}")
best_epoch = best_checkpoint_data["epoch"]
# save arg config to checkpoint_dir
with open(pathlib.Path(args.checkpoint_dir).joinpath("config.yaml"), "w") as f1:
dump_args = copy.deepcopy(args)
# drop stuff we can't serialize
del(dump_args.__dict__["cfg"])
del(dump_args.__dict__["__cwd__"])
del(dump_args.__dict__["__path__"])
to_dump = dump_args.__dict__
# dump
yaml.safe_dump(to_dump, f1, encoding='utf-8', allow_unicode=True)
else:
# test-time, load best model
print(f"loading model weights from {args.checkpoint_dir}")
#state_dict = torch.load(pathlib.Path(args.checkpoint_dir).joinpath("best.th"))
#encoder.load_state_dict(state_dict, strict=True)
encoder = encoder.to("cpu")
state_dict = torch.load(pathlib.Path(args.checkpoint_dir).joinpath("best.th"), map_location='cpu')
encoder.load_state_dict(state_dict, strict=True)
encoder = encoder.cuda(device)
num_blocks = 1
# construct trainer
trainer = NavigationTransformerTrainer(dataset_reader = dataset_reader,
encoder = encoder,
optimizer = optimizer,
scheduler = scheduler,
num_epochs = args.num_epochs,
num_blocks = num_blocks,
device = device,
checkpoint_dir = args.checkpoint_dir,
checkpoint_every = args.checkpoint_every,
validation_limit = args.validation_limit,
num_models_to_keep = args.num_models_to_keep,
generate_after_n = args.generate_after_n,
score_type=args.score_type,
depth = depth,
resolution = args.resolution,
output_type = args.output_type,
patch_size = args.patch_size,
block_size = block_size,
best_epoch = best_epoch,
seed = args.seed,
zero_weight = args.zero_weight,
debug_image_top_k = args.debug_image_top_k,
debug_image_threshold = args.debug_image_threshold)
if not args.test:
trainer.train()
else:
print(f"evaluating")
acc = trainer.evaluate()
print(f"accuracy: {acc}")
if __name__ == "__main__":
np.random.seed(12)
torch.manual_seed(12)
parser = configure_parser()
args = parser.parse_args()
main(args)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。