代码拉取完成,页面将自动刷新
import json
import argparse
from typing import List, Dict
import glob
import os
import pathlib
import pdb
import subprocess
from io import StringIO
import torch
from spacy.tokenizer import Tokenizer
from spacy.lang.en import English
import logging
from tqdm import tqdm
from matplotlib import pyplot as plt
import numpy as np
import torch.autograd.profiler as profiler
from torch.nn import functional as F
import pandas as pd
import kornia
from encoders import LSTMEncoder
from language_only import LanguageEncoder
from language_embedders import RandomEmbedder
from unet_module import BaseUNet, UNetWithLanguage, UNetWithBlocks
from unet_shared import SharedUNet
from mlp import MLP
from data import DatasetReader
from train_language_encoder import get_free_gpu, load_data, get_vocab, LanguageTrainer, FlatLanguageTrainer
class LanguageAloneTrainer(FlatLanguageTrainer):
def __init__(self,
train_data: List,
val_data: List,
encoder: LanguageEncoder,
optimizer: torch.optim.Optimizer,
num_epochs: int,
num_blocks: int,
device: torch.device,
checkpoint_dir: str,
num_models_to_keep: int,
generate_after_n: int,
depth: int = 7,
best_epoch: int = -1,
zero_weight: float = 0.05):
super(LanguageAloneTrainer, self).__init__(train_data,
val_data,
encoder,
optimizer,
num_epochs,
num_blocks,
device,
checkpoint_dir,
num_models_to_keep,
generate_after_n,
depth,
best_epoch)
self.xent_loss_fxn = torch.nn.CrossEntropyLoss()
def train_and_validate_one_epoch(self, epoch):
print(f"Training epoch {epoch}...")
self.encoder.train()
skipped = 0
for b, batch_instance in tqdm(enumerate(self.train_data)):
self.optimizer.zero_grad()
lang_outputs = self.encoder(batch_instance)
loss = self.compute_loss(batch_instance, lang_outputs)
loss.backward()
self.optimizer.step()
print(f"skipped {skipped} examples")
print(f"Validating epoch {epoch}...")
total = 0
total_block_acc = 0.0
self.encoder.eval()
for b, dev_batch_instance in tqdm(enumerate(self.val_data)):
block_acc = self.validate(dev_batch_instance, epoch, b, 0)
total_block_acc += block_acc
total += 1
mean_block_acc = total_block_acc / total
print(f"Epoch {epoch} has block acc {mean_block_acc * 100}")
return mean_block_acc, 0.0
def compute_loss(self, inputs, lang_outputs):
pred_next_block_logits = lang_outputs["pred_block_logits"]
true_next_block_idxs = inputs["block_to_move"]
true_next_block_idxs = true_next_block_idxs.to(self.device).long().reshape(-1)
block_loss = self.xent_loss_fxn(pred_next_block_logits, true_next_block_idxs)
return block_loss
def validate(self, batch_instance, epoch_num, batch_num, instance_num):
self.encoder.eval()
#pdb.set_trace()
lang_outputs= self.encoder(batch_instance)
block_accuracy = self.compute_block_accuracy(batch_instance, lang_outputs)
return block_accuracy
def main(args):
if args.binarize_blocks:
args.num_blocks = 1
device = "cpu"
if args.cuda is not None:
free_gpu_id = get_free_gpu()
if free_gpu_id > -1:
device = f"cuda:{free_gpu_id}"
device = torch.device(device)
print(f"On device {device}")
test = torch.ones((1))
test = test.to(device)
# load the data
dataset_reader = DatasetReader(args.train_path,
args.val_path,
None,
batch_by_line = args.traj_type != "flat",
traj_type = args.traj_type,
batch_size = args.batch_size,
max_seq_length = args.max_seq_length,
do_filter = args.do_filter,
top_only = args.top_only,
binarize_blocks = args.binarize_blocks)
checkpoint_dir = pathlib.Path(args.checkpoint_dir)
if not args.test:
print(f"Reading data from {args.train_path}")
train_vocab = dataset_reader.read_data("train")
try:
os.mkdir(checkpoint_dir)
except FileExistsError:
pass
with open(checkpoint_dir.joinpath("vocab.json"), "w") as f1:
json.dump(list(train_vocab), f1)
else:
print(f"Reading vocab from {checkpoint_dir}")
with open(checkpoint_dir.joinpath("vocab.json")) as f1:
train_vocab = json.load(f1)
print(f"Reading data from {args.val_path}")
dev_vocab = dataset_reader.read_data("dev")
print(f"got data")
# construct the vocab and tokenizer
nlp = English()
tokenizer = Tokenizer(nlp.vocab)
print(f"constructing model...")
# get the embedder from args
if args.embedder == "random":
embedder = RandomEmbedder(tokenizer, train_vocab, args.embedding_dim, trainable=True)
else:
raise NotImplementedError(f"No embedder {args.embedder}")
# get the encoder from args
if args.encoder == "lstm":
encoder = LSTMEncoder(input_dim = args.embedding_dim,
hidden_dim = args.encoder_hidden_dim,
num_layers = args.encoder_num_layers,
dropout = args.dropout,
bidirectional = args.bidirectional)
else:
raise NotImplementedError(f"No encoder {args.encoder}") # construct the model
encoder = LanguageEncoder(embedder,
encoder,
device )
if args.cuda is not None:
encoder= encoder.cuda(device)
print(encoder)
# construct optimizer
optimizer = torch.optim.Adam(encoder.parameters())
#optimizer = torch.optim.SGD(encoder.parameters(), lr = 0.01 )
best_epoch = -1
if not args.test:
if not args.resume:
try:
os.mkdir(args.checkpoint_dir)
except FileExistsError:
# file exists
try:
assert(len(glob.glob(os.path.join(args.checkpoint_dir, "*.th"))) == 0)
except AssertionError:
raise AssertionError(f"Output directory {args.checkpoint_dir} non-empty, will not overwrite!")
else:
# resume from pre-trained
state_dict = torch.load(pathlib.Path(args.checkpoint_dir).joinpath("best.th"))
encoder.load_state_dict(state_dict, strict=True)
# get training info
best_checkpoint_data = json.load(open(pathlib.Path(args.checkpoint_dir).joinpath("best_training_state.json")))
print(f"best_checkpoint_data {best_checkpoint_data}")
best_epoch = best_checkpoint_data["epoch"]
# save arg config to checkpoint_dir
with open(pathlib.Path(args.checkpoint_dir).joinpath("config.json"), "w") as f1:
json.dump(args.__dict__, f1)
# construct trainer
trainer = LanguageAloneTrainer(train_data = dataset_reader.data["train"],
val_data = dataset_reader.data["dev"],
encoder = encoder,
optimizer = optimizer,
num_epochs = args.num_epochs,
num_blocks = args.num_blocks,
device = device,
checkpoint_dir = args.checkpoint_dir,
num_models_to_keep = args.num_models_to_keep,
generate_after_n = 110,
depth = 0,
best_epoch = best_epoch,
zero_weight = 0)
trainer.train()
else:
# test-time, load best model
print(f"loading model weights from {args.checkpoint_dir}")
state_dict = torch.load(pathlib.Path(args.checkpoint_dir).joinpath("best.th"))
encoder.load_state_dict(state_dict, strict=True)
trainer = LanguageAloneTrainer(train_data = dataset_reader.data["train"],
val_data = dataset_reader.data["dev"],
encoder = encoder,
optimizer = optimizer,
num_epochs = args.num_epochs,
num_blocks = args.num_blocks,
device = device,
checkpoint_dir = args.checkpoint_dir,
num_models_to_keep = args.num_models_to_keep,
generate_after_n = 110,
depth = 0,
best_epoch = best_epoch,
zero_weight = 0)
print(f"evaluating")
eval_trainer.evaluate()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# training
parser.add_argument("--test", action="store_true", help="load model and test")
parser.add_argument("--resume", action="store_true", help="resume training a model")
# data
parser.add_argument("--train-path", type=str, help="path to train data")
parser.add_argument("--val-path", type=str, help = "path to dev data" )
parser.add_argument("--num-blocks", type=int, default=20)
parser.add_argument("--binarize-blocks", action="store_true", help="flag to treat block prediction as binary task instead of num-blocks-way classification")
parser.add_argument("--traj-type", type=str, default="flat", choices = ["flat", "trajectory"])
parser.add_argument("--batch-size", type=int, default = 32)
parser.add_argument("--max-seq-length", type=int, default = 65)
parser.add_argument("--do-filter", action="store_true", help="set if we want to restrict prediction to the block moved")
parser.add_argument("--top-only", action="store_true", help="set if we want to train/predict only the top-most slice of the top-down view")
# language embedder
parser.add_argument("--embedder", type=str, default="random", choices = ["random", "glove"])
parser.add_argument("--embedding-dim", type=int, default=300)
# language encoder
parser.add_argument("--encoder", type=str, default="lstm", choices = ["lstm", "transformer"])
parser.add_argument("--encoder-hidden-dim", type=int, default=128)
parser.add_argument("--encoder-num-layers", type=int, default=2)
parser.add_argument("--bidirectional", action="store_true")
# block mlp
parser.add_argument("--compute-block-dist", action="store_true")
parser.add_argument("--mlp-hidden-dim", type=int, default = 128)
parser.add_argument("--mlp-num-layers", type=int, default = 3)
# misc
parser.add_argument("--dropout", type=float, default=0.2)
parser.add_argument("--cuda", type=int, default=None)
parser.add_argument("--checkpoint-dir", type=str, default="models/language_pretrain")
parser.add_argument("--num-models-to-keep", type=int, default = 5)
parser.add_argument("--num-epochs", type=int, default=3)
args = parser.parse_args()
main(args)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。