代码拉取完成,页面将自动刷新
# test_stats.py collects trial avg progress reversal/recovery stats
import cv2
import os
import re
import argparse
import numpy as np
from scipy import stats
from utils import get_prediction_vis
from logger import Logger
if __name__ == '__main__':
# parse arguments
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--data_dir', required=True, help='path to logged run')
parser.add_argument('-s', dest='start_trial', type=int, action='store', default=0, help='Trial to start from, default is 0.')
parser.add_argument('-t', dest='num_trials', type=int, action='store', default=None, help='Number of trials to evaluate from start, default is all trials.')
parser.add_argument('-v', dest='success_height', type=float, action='store', default=4.0, help='Max height (number of task progress steps) for considering a trial successful, default is 4, such as a stack of 4 blocks.')
parser.add_argument('-e', dest='epsilon', type=float, action='store', default=0.1, help='Permissible height error margin, i.e. default .1 will count 3.9 as a full stack of 4 when success_height is 4.')
parser.add_argument('-i', dest='ignore_trial', type=int, action='store', default=None, help='Trial to ignore, default is None, first trial will be 0 (beware! live run printouts start at 1 in main.py).')
args = parser.parse_args()
# load executed actions
action_log = np.loadtxt(os.path.join(args.data_dir, 'transitions', 'executed-action.log.txt'))
# get all heightmap paths
heightmap_paths = os.listdir(os.path.join(args.data_dir, 'data', 'depth-heightmaps'))
# filter out the initially saved heightmaps and get the full path
heightmap_paths = sorted([os.path.join(args.data_dir, 'data', 'depth-heightmaps', h) \
for h in heightmap_paths if '0.depth' in h])
kwargs = {'delimiter': ' ', 'ndmin': 2}
iteration = int(np.loadtxt(os.path.join(args.data_dir, 'transitions', 'iteration.log.txt'), **kwargs)[0, 0])
stack_height_log = np.loadtxt(os.path.join(args.data_dir, 'transitions', 'stack-height.log.txt'), **kwargs)
stack_height_log = stack_height_log[0:iteration]
stack_height_log = stack_height_log.tolist()
partial_stack_success_log = np.loadtxt(os.path.join(args.data_dir, 'transitions', 'partial-stack-success.log.txt'), **kwargs)
partial_stack_success_log = partial_stack_success_log[0:iteration]
partial_stack_success_log = partial_stack_success_log.tolist()
place_success_log = np.loadtxt(os.path.join(args.data_dir, 'transitions', 'place-success.log.txt'), **kwargs)
place_success_log = place_success_log[0:iteration]
place_success_log = place_success_log.tolist()
trial_success_log = np.loadtxt(os.path.join(args.data_dir, 'transitions', 'trial-success.log.txt'), **kwargs)
trial_success_log = trial_success_log[0:iteration]
trial_success_log = trial_success_log.tolist()
if os.path.exists(os.path.join(args.data_dir, 'transitions', 'clearance.log.txt')):
clearance_log = np.loadtxt(os.path.join(args.data_dir, 'transitions', 'clearance.log.txt'), **kwargs).astype(np.int64)
clearance_log = clearance_log.tolist()
unstack = re.search('unstack', args.data_dir, re.IGNORECASE)
# update the reward values for a whole trial, not just recent time steps
end = int(clearance_log[-1][0])
start_trial = args.start_trial
clearance_length = len(clearance_log)
num_trials = clearance_length - 1 # the code typically collects one more trial than needed
print('clearance_length (total number of trials saved): ' + str(clearance_length) + ' start trial: ' + str(start_trial))
if args.num_trials is not None:
num_trials = min(args.num_trials, clearance_length - start_trial)
epsilon = args.epsilon
success_height = args.success_height
print('num_trials (total number of trials to evaluate): ' + str(num_trials))
max_heights = []
progress_reversals = []
recoveries = []
successful_trials = []
trial_start = 0
efficiency_actions_six = 0
efficiency_actions_four = 0
for i in range(start_trial, start_trial + num_trials):
trial_successful = 0
trial_end = clearance_log[i][0]
progress_reversal = 0.
stack_height = 1
print('----------\ntrial num: ' + str(i))
print('start: ' + str(trial_start) + ' trial end: ' + str(trial_end ))
if trial_start == trial_end:
print('TRIAL ' + str(i) + ' IS EMPTY, skipping')
continue
if args.ignore_trial is not None and i == args.ignore_trial:
print('TRIAL ' + str(i) + ' IS BEING IGNORED, skipping')
continue
trial_heights = np.array(stack_height_log[trial_start: trial_end])
print(trial_heights)
if unstack and len(trial_heights) == 1:
# special case for unstacking task where the trial ends immediately
progress_reversal = 1.
max_heights += [1]
else:
max_heights += [np.max(trial_heights)]
for j in range(trial_start, max(trial_start, trial_end - 1)):
# allow a little bit of leeway, 0.1 progress, to consider something a reversal
if stack_height_log[j][0] - epsilon > stack_height_log[j+1][0]:
progress_reversal = 1.
print('trial ' + str(i) + ' progress reversal at overall step: ' + str(j) + ' (this trial step: ' + str(j - trial_start) + ') because ' +
str(stack_height_log[j][0] ) + ' - ' + str(epsilon) + ' > ' + str(stack_height_log[j+1][0]))
progress_reversals += [progress_reversal]
if trial_end == len(trial_success_log):
# workaround for when the very last trial would be indexed past the end
trial_end -= 1
trial_successful = trial_success_log[trial_end] > trial_success_log[trial_start]
# if i == 6: # special one-time workaround for 2021-02-28-14-27-07_Real-Unstacking-Imitation trial 6 (one indexed trial 7), to correct saved results typo to match video results
# progress_reversal = 1.
# max_heights[-1] = 3
# trial_successful = 0
print('log indicates trial success') if trial_successful else print('log indicates trial failure')
if unstack and not trial_successful and len(trial_heights) > 1 and max_heights[-1] == 4.:
# special case for unstack failures, sometimes progress of 4 gets logged after a topple
print('unstack correction max height: ' + str(max_heights[-1]) + ' to ' + str(trial_heights[-2]))
max_heights[-1] = float(trial_heights[-2])
successful_trials += [trial_successful]
if progress_reversal == 1.:
recoveries += [1.] if trial_successful == 1 else [0.]
# workaround failed trials that end in fewer actions than would be possible to optimally succeed
efficiency_actions_six += len(trial_heights) if trial_successful == 1 else max(len(trial_heights), 6)
efficiency_actions_four += len(trial_heights) if trial_successful == 1 else max(len(trial_heights), 4)
trial_start = trial_end
max_heights = np.array(max_heights)
max_heights_rounded = np.rint(max_heights)
print('------------------------------')
print('data dir: ' + str(args.data_dir))
print('max_heights, the highest height in each trial: ' + str(max_heights))
print('max_heights_rounded, the highest height in each trial: ' + str(max_heights_rounded))
print('logged trial success in trial_success_log.txt: ' + str(successful_trials))
print('trials (success_height - epsilon) height or higher, another way of counting trial successes: ' + str(max_heights >= (success_height - epsilon)))
print('reversals: ' + str(progress_reversals))
print('recoveries: ' + str(recoveries))
print('total trials: ' + str(clearance_length) + ' (clearance_length, total number of trials)')
print('num trials evaluated: ' + str(num_trials) + ' start trial: ' + str(start_trial))
if args.ignore_trial is not None:
print('Trial ' + str(args.ignore_trial) + ' ignored, typically due to a simulator or physical robot problem.')
print('avg max height: ' + str(np.mean(max_heights)) + ' (higher is better, find max height for each trial, then average those values)')
print('avg max progress: ' + str(np.mean(max_heights_rounded)/success_height) + ' (higher is better, (avg(round(max_heights))/' + str(success_height) + '))')
print('standard deviation of max progress normalized to 0 to 1: ' + str(np.std(max_heights_rounded)/success_height))
print('standard error of max progress normalized to 0 to 1: ' + str(stats.sem(max_heights_rounded)/success_height))
print('avg reversals: ' + str(np.mean(progress_reversals)) + ' (lower is better)')
print('avg recoveries: ' + str(np.mean(recoveries)) + ' (higher is better, no need for recovery attempts is best)')
print('avg logged trial success: ' + str(np.mean(successful_trials)) + " (successful trials according to trial_success_log.txt)")
print('avg trial success: ' + str(np.mean(max_heights >= (success_height - epsilon))) + ' (higher is better, (success_height - epsilon) height or higher)')
print('action efficiency with 6 action per trial optimum: ' + str((6.*num_trials)/efficiency_actions_six) + ' action efficiency with 4 action per trial optimum: ' + str((4.*num_trials)/efficiency_actions_four))
print('data dir: ' + str(args.data_dir))
# if end <= len(stack_height_log):
# # First entry won't be zero...
# if clearance_length == 1:
# start = 0
# else:
# start = int(clearance_log[-2][0])
# new_log_values = []
# future_r = None
# # going backwards in time from most recent to oldest step
# for i in range(start, end):
# # iterate through heightmaps in data/depth_heightmaps
# for ind, h in enumerate(heightmap_paths):
# # make sure we break if we run out of logged actions (in case run ended unexpectedly)
# if ind >= len(action_log):
# break
# # load img
# img = cv2.imread(h)
# img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
# # visualize best pix ind
# img_viz = get_prediction_vis(np.ones_like(img), img, action_log[ind][1:],
# specific_rotation=action_log[ind][1], num_rotations=16)
# # write img_viz (use same img name as heightmap name)
# cv2.imwrite(os.path.join(args.data_dir, 'visualizations', h.split('/')[-1]), img_viz)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。