代码拉取完成,页面将自动刷新
import os
import json
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.ticker import PercentFormatter
from glob import glob
import utils
import scipy
def best_success_rate(success_rate, window, title):
# Print the best success rate ever
dict_title = str(title).replace(' ', '_')
best_dict = {dict_title + '_best_value': float(-np.inf), dict_title + '_best_index': None}
current_dict = {dict_title + '_current_value': float(success_rate[-1]), dict_title + '_current_index': int(len(success_rate)-1)}
if success_rate.shape[0] > window:
best = np.max(success_rate[window:])
# If there are multiple entries with equal maximum success rates, take the last one because it will have the most training.
best_index = np.max(np.argmax(success_rate[window:], axis=0)) + window
best_dict = {dict_title + '_best_value': float(best), dict_title + '_best_index': int(best_index)}
print('Max ' + title + ': ' + str(best) +
', at action iteration: ' + str(best_index) +
'. (total of ' + str(success_rate.shape[0]) + ' actions, max excludes first ' + str(window) + ' actions)')
return best_dict, current_dict
def count_preset_arrangements(trial_complete_indices, trial_successes, num_preset_arrangements, hotfix_trial_success_index=True, log_dir=None):
arrangement_successes = np.zeros(num_preset_arrangements)
trials_per_arrangement = int(float(len(trial_complete_indices)) / float(num_preset_arrangements))
arrangement_trials = np.array([trials_per_arrangement]*num_preset_arrangements)
if hotfix_trial_success_index:
# TODO(ahundt) currently the trial success values are inserted too early in the array. Fix then set hotfix param above to false
trial_successes = np.insert(trial_successes, [0]*3, 0)
num_arrangements_complete = 0
length = np.min([np.max(trial_complete_indices), trial_successes.shape[0]])
arrangement_idx = 0
trial_num = 0
clearance_start = 0
successes_this_arrangement = 0
prev_trial_successes = 0
print('max trial successes: ' + str(np.max(trial_successes)))
for trial_num, index in enumerate(trial_complete_indices):
index = int(index)
cur_trial_successes = np.max(trial_successes[clearance_start:index])
# print(success)
arrangement_successes[arrangement_idx] += prev_trial_successes < cur_trial_successes
prev_trial_successes = cur_trial_successes
if trial_num > 0 and trial_num % trials_per_arrangement == 0:
arrangement_idx += 1
clearance_start = index
individual_arrangement_trial_success_rate = np.divide(np.array(arrangement_successes), arrangement_trials, out=np.zeros(num_preset_arrangements), where=arrangement_trials!=0.0)
print('individual_arrangement_trial_success_rate: ' + str(individual_arrangement_trial_success_rate))
senarios_100_percent_complete = np.sum(individual_arrangement_trial_success_rate == 1.0)
print('senarios_100_percent_complete: ' + str(senarios_100_percent_complete))
best_dict = {'senarios_100_percent_complete': senarios_100_percent_complete}
return best_dict
def get_trial_success_rate(trials, trial_successes, window=200, hotfix_trial_success_index=True):
"""Evaluate moving window of grasp success rate
trials: Nx1 array of the current total trial count at that action
trial_successes: Nx1 array of the current total successful trial count at the time of that action
"""
length = np.min([trials.shape[0], trial_successes.shape[0]])
success_rate = np.zeros(length - 1)
lower = np.zeros_like(success_rate)
upper = np.zeros_like(success_rate)
if hotfix_trial_success_index:
# TODO(ahundt) currently the trial success values are inserted too early in the array. Fix then set hotfix param above to false
trial_successes = np.insert(trial_successes, [0]*3, 0)
for i in range(length - 1):
start = max(i - window, 0)
# get the number of trials that have passed starting with 0 at
# the beginning of the trial window, by subtracting the
# min trial count in the window from the current
trial_window = trials[start:i+1] - np.min(trials[start:i+1])
# get the number of successful trials that have passed starting with 0 at
# the beginning of the trial window, by subtracting the
# min successful trial count in the window from the current
success_window = trial_successes[start:i+1] - np.min(trial_successes[start:i+1])
# if success_window.shape[0] < window:
# print(window - success_window.shape[0])
# success_window = np.concatenate([success_window, np.zeros(window - success_window.shape[0])], axis=0)
success_window_max = np.max(success_window)
trial_window_max = np.max(trial_window)
if trials.shape[0] >= window and i < window:
trial_window_max = max(trial_window_max, np.max(trials[:window]))
success_rate[i] = np.divide(success_window_max, trial_window_max, out=np.zeros(1), where=trial_window_max!=0.0)
# TODO(ahundt) fix the discontinuities in the log from writing the success count at a slightly different time, remove median filter workaround
if np.any(success_rate > 1.0):
print('WARNING: BUG DETECTED, applying median filter to compensate for trial success time step offsets. '
'The max is ' + str(np.max(success_rate)) + ' at index ' + str(np.argmax(success_rate)) +
' but the largest valid value is 1.0. You should look at the raw log data, '
'fix the bug in the original code, and preprocess the raw data to correct this error.')
# success_rate = np.clip(success_rate, 0, 1)
success_rate = scipy.ndimage.median_filter(success_rate, 7)
for i in range(length - 1):
var = np.sqrt(success_rate[i] * (1 - success_rate[i]) / success_window.shape[0])
lower[i] = success_rate[i] + 3*var
upper[i] = success_rate[i] - 3*var
lower = np.clip(lower, 0, 1)
upper = np.clip(upper, 0, 1)
# Print the best success rate ever, excluding actions before the initial window
best_dict, current_dict = best_success_rate(success_rate, window, 'trial success rate')
return success_rate, lower, upper, best_dict, current_dict
def get_grasp_success_rate(actions, rewards=None, window=200, reward_threshold=0.5):
"""Evaluate moving window of grasp success rate
actions: Nx4 array of actions giving [id, rotation, i, j]
rewards: an array of size N with the rewards associated with each action, only viable in pushing/grasping scenario,
do not specify if placing is available, because a place action indicates the previous grasp was successful.
"""
grasps = actions[:, 0] == utils.ACTION_TO_ID['grasp']
if rewards is None:
places = actions[:, 0] == utils.ACTION_TO_ID['place']
length = np.min([rewards.shape[0], actions.shape[0]])
success_rate = np.zeros(length - 1)
lower = np.zeros_like(success_rate)
upper = np.zeros_like(success_rate)
for i in range(length - 1):
start = max(i - window, 0)
if rewards is None:
# Where a place entry is True, the grasp on the previous action was successful
successes = places[start+1: i+2][grasps[start:i+1]]
else:
successes = (rewards[start: i+1] > reward_threshold)[grasps[start:i+1]]
grasp_count = grasps[start:i+1].sum()
if successes.shape[0] < window and length > window and i < window:
# Inital actions are zero filled, assuming an "infinite past of failure" before the first action.
# print('extra zeros: ' + str(np.sum(grasps[i:window])))
grasp_count = grasps[start:min(start+window, grasps.shape[0])].sum()
success_rate[i] = float(successes.sum()) / float(grasp_count) if grasp_count > 0 else 0.0
var = np.sqrt(success_rate[i] * (1 - success_rate[i]))
# use np.divide to prevent dividing by zero
var = np.divide(var, successes.shape[0], out=np.zeros_like(var), where=var!=0)
lower[i] = success_rate[i] + 3*var
upper[i] = success_rate[i] - 3*var
lower = np.clip(lower, 0, 1)
upper = np.clip(upper, 0, 1)
# Print the best success rate ever, excluding actions before the initial window
best_dict, current_dict = best_success_rate(success_rate, window, 'grasp success rate')
return success_rate, lower, upper, best_dict, current_dict
def get_place_success_rate(stack_height, actions, include_push=False, window=200, hot_fix=False, max_height=4, task_type=None):
"""
stack_heights: length N array of integer stack heights
actions: Nx4 array of actions giving [id, rotation, i, j]
hot_fix: fix the stack_height bug, where the trial didn't end on successful pushes, which reached a stack of 4.
where id=0 is a push, id=1 is grasp, and id=2 is place.
"""
if hot_fix:
indices = np.logical_or(stack_height < 4, np.array([True] + list(stack_height[:-1] < 4)))
actions = actions[:stack_height.shape[0]][indices]
stack_height = stack_height[indices]
if include_push:
success_possible = actions[:, 0] == 2
else:
success_possible = np.logical_or(actions[:, 0] == 0, actions[:, 0] == 2)
stack_height_increased = np.zeros_like(stack_height, np.bool)
stack_height_increased[0] = False
if task_type is None or task_type != 'unstack':
# the stack height increased if the next stack height is higher than the previous
stack_height_increased[1:] = stack_height[1:] > stack_height[:-1]
else:
# the action was sucessful if the next stack height is equal to or higher than the previous
stack_height_increased[1:] = stack_height[1:] >= stack_height[:-1]
success_rate = np.zeros_like(stack_height)
lower = np.zeros_like(success_rate)
upper = np.zeros_like(success_rate)
for i in range(stack_height.shape[0]):
start = max(i - window, 0)
successes = stack_height_increased[start:i+1][success_possible[start:i+1]]
if stack_height.shape[0] > window and i < window:
successes = np.concatenate([successes, np.zeros(window - i)], axis=0)
success_rate[i] = successes.mean()
success_rate[np.isnan(success_rate)] = 0
var = np.sqrt(success_rate[i] * (1 - success_rate[i]))
# use np.divide to prevent dividing by zero
var = np.divide(var, successes.shape[0], out=np.zeros_like(var), where=var!=0)
lower[i] = success_rate[i] + 3*var
upper[i] = success_rate[i] - 3*var
lower = np.clip(lower, 0, 1)
upper = np.clip(upper, 0, 1)
# Print the best success rate ever, excluding actions before the initial window
best_dict, current_dict = best_success_rate(success_rate, window, 'place success rate')
return success_rate, lower, upper, best_dict, current_dict
def get_action_efficiency(stack_height, window=200, ideal_actions_per_trial=6, max_height=4, task_type=None, trial_success_log=None):
"""Calculate the running action efficiency from successful trials.
trials: array giving the number of trials up to iteration i (TODO: unused?)
min_actions: ideal number of actions per trial
Formula: successful_trial_count * ideal_actions_per_trial / window_size
"""
# a stack is considered successful when the height is >= 4 blocks tall (~20cm)
# if unstacking, additionally check if trial was completed at that index
# success = np.rint(stack_height) == max_height
# TODO(ahundt) it may be better to drop this function and modify get_trial_success_rate() to calculate: max(trial_successes)-min(trial_successes)/(window/ideal_actions_per_trial)
success = stack_height >= max_height
if task_type is not None and task_type == 'unstack':
if trial_success_log is None:
raise ValueError("Must provide trial success log when evaluating unstacking action efficiency")
# successes are when trial was logged as successful
success[0] = trial_success_log[0]
success[1:] = trial_success_log[1:] - trial_success_log[:-1]
efficiency = np.zeros_like(stack_height, np.float64)
lower = np.zeros_like(efficiency)
upper = np.zeros_like(efficiency)
for i in range(1, efficiency.shape[0]):
start = max(i - window, 1)
window_size = min(i, window)
num_trials = success[start:i+1].sum()
# assume historical actions are failures if we haven't completed window # actions
efficiency[i] = num_trials * ideal_actions_per_trial / window
var = efficiency[i] / np.sqrt(window_size)
lower[i] = efficiency[i] + 3*var
upper[i] = efficiency[i] - 3*var
lower = np.clip(lower, 0, 1)
upper = np.clip(upper, 0, 1)
# Print the best success rate ever, excluding actions before the initial window
best_dict, current_dict = best_success_rate(efficiency, window, 'action efficiency')
return efficiency, lower, upper, best_dict, current_dict
def get_grasp_action_efficiency(actions, rewards, reward_threshold=0.5, window=200, ideal_actions_per_trial=3):
"""Get grasp efficiency from when the trial count increases.
"""
grasps = actions[:, 0] == 1
length = np.min([rewards.shape[0], actions.shape[0]])
efficiency = np.zeros(length, np.float64)
lower = np.zeros_like(efficiency)
upper = np.zeros_like(efficiency)
for i in range(1, length):
start = max(i - window, 0)
window_size = np.array(min(i+1, window), np.float64)
successful = rewards[start: i+1] > reward_threshold
successful_grasps = np.array(successful[grasps[start:start+successful.shape[0]]].sum(), np.float64)
# print(successfu)
# print(successful_grasps)
efficiency[i] = successful_grasps / window
var = efficiency[i] / np.sqrt(window_size)
lower[i] = efficiency[i] + 3*var
upper[i] = efficiency[i] - 3*var
lower = np.clip(lower, 0, 1)
upper = np.clip(upper, 0, 1)
# Print the best success rate ever, excluding actions before the initial window
best_dict, current_dict = best_success_rate(efficiency, window, 'grasp action efficiency')
return efficiency, lower, upper, best_dict, current_dict
def real_robot_speckle_noise_hotfix(heights, trial, trial_success, clearance, over_height_threshold=6.0):
# length = min([heights.shape[0], trial.shape[0], trial_success.shape[0]])
actions_with_height_noise = heights > over_height_threshold
new_clearance = []
for trial_it in clearance:
recent_actions = actions_with_height_noise[int(trial_it) - 3:int(trial_it)]
if not np.any(recent_actions):
new_clearance += [trial_it]
trial = np.array(utils.clearance_log_to_trial_count(new_clearance)).astype(np.int)
heights[actions_with_height_noise] = 1.0
return heights, trial, trial_success, clearance
def plot_it(log_dir, title, window=1000, colors=None,
alpha=0.16, mult=100, max_iter=None, place=None, rasterized=True, clear_figure=True,
apply_real_robot_speckle_noise_hotfix=False, num_preset_arrangements=None,
label=None, categories=None, ylabel=None, save=True, save_dir='',
task_type=None):
# set the global plot font to Times New Roman https://stackoverflow.com/a/40734893
plt.rcParams["font.family"] = "Times New Roman"
if categories is None:
categories = ['place_success', 'grasp_success', 'action_efficiency', 'trial_success']
if colors is None:
colors = ['tab:blue', 'tab:green', 'tab:orange', 'tab:purple']
best_dict = {}
current_dict = {}
stack_height_file = os.path.join(log_dir, 'transitions', 'stack-height.log.txt')
if os.path.isfile(stack_height_file):
heights = np.loadtxt(stack_height_file)
rewards = None
if place is None:
place = True
else:
rewards = np.loadtxt(os.path.join(log_dir, 'transitions', 'reward-value.log.txt'))
if place is None:
place = False
actions = np.loadtxt(os.path.join(log_dir, 'transitions', 'executed-action.log.txt'))
trial_complete_indices = np.loadtxt(os.path.join(log_dir, 'transitions', 'clearance.log.txt'))
print('trial_complete_indices: ' + str(trial_complete_indices))
trials = np.array(utils.clearance_log_to_trial_count(trial_complete_indices)).astype(np.int)
if window is None:
# if window isn't defined, make it just shy of the full data length,
# since log updates are delayed by a couple actions in some cases
window = len(actions) - 4
if max_iter is not None:
if place:
heights = heights[:max_iter]
else:
rewards = rewards[:max_iter]
actions = actions[:max_iter]
trials = trials[:max_iter]
grasp_success_file = os.path.join(log_dir, 'transitions', 'grasp-success.log.txt')
if os.path.isfile(grasp_success_file):
grasp_rewards = np.loadtxt(grasp_success_file)
else:
# old versions of logged code don't have the grasp-success.log.txt file, data must be extracted from rewards.
grasp_rewards = rewards
# create and clear the figure
if clear_figure:
fig = plt.figure()
fig.clf()
else:
# get the currently active figure
fig = plt.gcf()
# Plot the rate and variance of trial successes
trial_success_file = os.path.join(log_dir, 'transitions', 'trial-success.log.txt')
if os.path.isfile(trial_success_file):
trial_successes = np.loadtxt(trial_success_file)
if max_iter is not None:
trial_successes = trial_successes[:max_iter]
if apply_real_robot_speckle_noise_hotfix:
clearance = np.loadtxt(os.path.join(log_dir, 'transitions', 'clearance.log.txt'))
heights, trials, trial_successes, clearance = real_robot_speckle_noise_hotfix(heights, trials, trial_successes, clearance)
if trial_successes.size > 0:
trial_success_rate, trial_success_lower, trial_success_upper, best, current = get_trial_success_rate(trials, trial_successes, window=window)
best_dict.update(best)
current_dict.update(current)
if num_preset_arrangements is not None:
best = count_preset_arrangements(trial_complete_indices, trial_successes, num_preset_arrangements)
best_dict.update(best)
current_dict.update(current)
# trial_reward_file = os.path.join(log_dir, 'transitions', 'trial-reward-value.log.txt')
# if os.path.isfile(trial_reward_file):
# grasp_rewards = np.loadtxt(trial_reward_file)
grasp_rate, grasp_lower, grasp_upper, best, current = get_grasp_success_rate(actions, rewards=grasp_rewards, window=window)
best_dict.update(best)
current_dict.update(current)
if place:
if 'row' in log_dir or 'row' in title.lower():
place_rate, place_lower, place_upper, best, current = get_place_success_rate(heights, actions, include_push=True, hot_fix=True, window=window, task_type=task_type)
else:
place_rate, place_lower, place_upper, best, current = get_place_success_rate(heights, actions, window=window, task_type=task_type)
best_dict.update(best)
current_dict.update(current)
eff, eff_lower, eff_upper, best, current = get_action_efficiency(heights, window=window, trial_success_log=trial_successes)
best_dict.update(best)
current_dict.update(current)
else:
eff, eff_lower, eff_upper, best, current = get_grasp_action_efficiency(actions, grasp_rewards, window=window)
best_dict.update(best)
current_dict.update(current)
if 'action_efficiency' in categories:
plt.plot(mult*eff, color=colors[2], label=label or 'Action Efficiency')
# plt.fill_between(np.arange(1, eff.shape[0]+1),
# mult*eff_lower, mult*eff_upper,
# color=colors[2], alpha=alpha)
if 'grasp_success' in categories:
plt.plot(mult*grasp_rate, color=colors[0], label=label or 'Grasp Success Rate')
# plt.fill_between(np.arange(1, grasp_rate.shape[0]+1),
# mult*grasp_lower, mult*grasp_upper,
# color=colors[0], alpha=alpha)
if place and 'place_success' in categories:
plt.plot(mult*place_rate, color=colors[1], label=label or 'Place Success Rate')
# plt.fill_between(np.arange(1, place_rate.shape[0]+1),
# mult*place_lower, mult*place_upper,
# color=colors[1], alpha=alpha)
if 'trial_success' in categories and os.path.isfile(trial_success_file) and trial_successes.size > 0:
plt.plot(mult*trial_success_rate, color=colors[3], label=label or 'Trial Success Rate')
# plt.fill_between(np.arange(1, trial_success_rate.shape[0]+1),
# mult*trial_success_lower, mult*trial_success_upper,
# color=colors[3], alpha=alpha)
ax = plt.gca()
plt.xlabel('Number of Actions')
plt.ylabel('Mean % Over ' + str(window) + ' Actions, Higher is Better' if ylabel is None else ylabel)
plt.title(title)
plt.legend(loc='upper left')
ax.yaxis.set_major_formatter(PercentFormatter())
# we save the best stats and the generated plots in multiple locations for user convenience and backwards compatibility
file_format = '.png'
save_file = os.path.basename(log_dir + '-' + title).replace(':', '-').replace('.', '-').replace(',', '').replace(' ', '-') + '_success_plot'
# plt.show()
# print('title: ' + str(title) + ' label: ' + str(label))
if save:
if save_dir:
log_dir = os.path.join(save_dir, save_file)
dir_to_create = os.path.join(log_dir, 'data')
if not os.path.exists(dir_to_create):
utils.mkdir_p(dir_to_create)
dir_to_create = os.path.join(log_dir, 'transitions')
if not os.path.exists(dir_to_create):
utils.mkdir_p(dir_to_create)
if 'trial_success' in categories and os.path.isfile(trial_success_file) and trial_successes.size > 0:
trial_success_path = os.path.join(log_dir, 'transitions', 'trial-success-rate.log.csv')
print('saving trial success rate: ' + str(trial_success_path))
np.savetxt(trial_success_path, trial_success_rate, delimiter=', ', header='trial_success_rate')
if 'grasp_success' in categories:
grasp_success_path = os.path.join(log_dir, 'transitions', 'grasp-success-rate.log.csv')
print('saving grasp success rate: ' + str(grasp_success_path))
np.savetxt(grasp_success_path, grasp_rate, delimiter=', ', header='grasp_success_rate')
if place and 'place_success' in categories:
place_success_path = os.path.join(log_dir, 'transitions', 'place-success-rate.log.csv')
print('saving place success rate: ' + str(place_success_path))
np.savetxt(place_success_path, place_rate, delimiter=', ', header='place_success_rate')
if 'action_efficiency' in categories:
action_efficiency_path = os.path.join(log_dir, 'transitions', 'action-efficiency.log.csv')
print('saving action efficiency: ' + str(action_efficiency_path))
np.savetxt(action_efficiency_path, eff, delimiter=', ', header='action_efficiency')
print('saving plot: ' + save_file + file_format)
plt.savefig(save_file + file_format, dpi=300, optimize=True)
log_dir_fig_file = os.path.join(log_dir, save_file)
plt.savefig(log_dir_fig_file + file_format, dpi=300, optimize=True)
# plt.savefig(save_file + '.pdf')
# this is a backwards compatibility location for best_stats.json
best_stats_file = os.path.join(log_dir, 'data', 'best_stats.json')
print('saving best stats to: ' + best_stats_file)
with open(best_stats_file, 'w') as f:
json.dump(best_dict, f, cls=utils.NumpyEncoder, sort_keys=True)
# this is the more useful location for best_stats.json
best_stats_file = os.path.join(log_dir, 'best_stats.json')
print('saving best stats to: ' + best_stats_file)
with open(best_stats_file, 'w') as f:
json.dump(best_dict, f, cls=utils.NumpyEncoder, sort_keys=True)
if clear_figure:
plt.close(fig)
return best_dict, current_dict
def plot_compare(dirs, title, colors=None, labels=None, category='trial_success', **kwargs):
if labels is None:
labels = dirs
kwargs['categories'] = [category]
best_dicts = {}
current_dicts = {}
if colors is None:
cmap = plt.get_cmap('viridis')
colors = [[cmap(i / len(dirs))] * 4 for i, run_dir in enumerate(dirs)]
for i, run_dir in enumerate(dirs):
kwargs['clear_figure'] = i == 0
kwargs['label'] = labels[i]
kwargs['colors'] = colors[i]
kwargs['save'] = i == len(dirs)-1
# kwargs['save'] = True
print('plotting fig: ' + str(i) + ' label: ' + str(labels[i]))
best_dicts[run_dir], current_dicts[run_dir] = plot_it(run_dir, title, **kwargs)
return best_dicts, current_dicts # for some reason
if __name__ == '__main__':
# workaround matplotlib plotting thread crash https://stackoverflow.com/a/29172195
matplotlib.use('Agg')
# window = 1000
max_iter = None
window = 500
# plot_it('/home/costar/src/real_good_robot/logs/2020-02-24-01-16-21_Real-Push-and-Grasp-SPOT-Trial-Reward-Common-Sense-Testing', 'Sim to Real Pushing And Grasping, SPOT-Q', max_iter=None, window=None, save_dir='./paper_figures/')
plot_it('/media/costar/f5f1f858-3666-4832-beea-b743127f1030/real_good_robot/logs/2020-05-13-12-21-00_Sim-Rows-SPOT-Trial-Reward-Masked-Training/2020-05-17-13-08-59_Sim-Rows-SPOT-Trial-Reward-Masked-Testing', title='Rows Rtrial + SPOT-Q', window=1785, max_iter=None)
# plot_it('/home/costar/src/real_good_robot/logs/2020-02-22-19-54-28_Real-Push-and-Grasp-SPOT-Trial-Reward-Common-Sense-Testing', 'Sim to Real Pushing And Grasping, SPOT-Q',max_iter=None, window=None)
# plot_it('/home/costar/src/real_good_robot/logs/2020-02-23-11-43-55_Real-Push-and-Grasp-SPOT-Trial-Reward-Common-Sense-Training/2020-02-23-18-51-58_Real-Push-and-Grasp-SPOT-Trial-Reward-Common-Sense-Testing','Real Push and Grasp, SPOT-Q, Training', max_iter=None,window=None)
# plot_it('/home/costar/src/real_good_robot/logs/2020-02-23-11-43-55_Real-Push-and-Grasp-SPOT-Trial-Reward-Common-Sense-Training', 'Real Push and Grasp, SPOT-Q, Training', max_iter=1000, window=500)
##############################################################
#### IMPORTANT PLOT IN FINAL PAPER, data on costar workstation
# best_dict, current_dict = plot_compare(['./logs/2020-02-03-16-57-28_Sim-Stack-Trial-Reward-Common-Sense-Training',
# './logs/2020-02-20-16-20-23_Sim-Stack-SPOT-Trial-Reward-Common-Sense-Training',
# './logs/2020-02-03-16-58-06_Sim-Stack-Trial-Reward-Training'],
# title='Effect of Action Space on Early Training Progress',
# labels=['Dynamic with SPOT-Q',
# 'Dynamic no SPOT-Q',
# 'Standard'],
# max_iter=3000, window=window,
# ylabel='Mean Trial Success Rate Over ' + str(window) + ' Actions\nHigher is Better')
best_dict, current_dict = plot_compare(['./logs/2020-05-13-12-51-39_Sim-Stack-SPOT-Trial-Reward-Masked-Training',
'./logs/2020-05-23-14-31-09_Sim-Stack-SPOT-Trial-Reward-Masked-Training',
'./logs/2020-05-18-19-56-49_Sim-Stack-SPOT-Trial-Reward-Training'],
title='Effect of SPOT-Q on Early Training Progress',
labels=['Mask with SPOT-Q',
'Mask no SPOT-Q',
'No Mask, no SPOT-Q (Standard)'],
max_iter=None, window=window,
ylabel='Mean Trial Success Rate Over ' + str(window) + ' Actions\nHigher is Better',
save_dir='./paper_figures/')
##############################################################
# window = 200
# best_dict, current_dict = plot_compare(['./logs/2020-02-16-push-and-grasp-comparison/2020-02-16-21-33-59_Sim-Push-and-Grasp-SPOT-Trial-Reward-Common-Sense-Training',
# './logs/2020-02-16-push-and-grasp-comparison/2020-02-16-21-37-47_Sim-Push-and-Grasp-SPOT-Trial-Reward-Training',
# './logs/2020-02-16-push-and-grasp-comparison/2020-02-16-21-33-55_Sim-Push-and-Grasp-Two-Step-Reward-Training'],
# title='Early Grasping Success Rate in Training', labels=['SPOT-Q (Dynamic Action Space)', 'SPOT (Standard Action Space)', 'VPG (Prior Work)'],
# max_iter=2000, window=window,
# category='grasp_success',
# ylabel='Mean Grasp Success Rate Over ' + str(window) + ' Actions\nHigher is Better')
# # best_dict, current_dict = plot_it('./logs/2020-02-03-16-58-06_Sim-Stack-Trial-Reward-Training','Sim Stack, SPOT Trial Reward, Standard Action Space', window=1000)
# best_dict, current_dict = plot_it('./logs/2020-02-19-15-33-05_Real-Push-and-Grasp-SPOT-Trial-Reward-Common-Sense-Training', 'Real Push and Grasp, SPOT Reward, Common Sense', window=150)
# best_dict, current_dict = plot_it('./logs/2020-02-18-18-58-15_Real-Push-and-Grasp-Two-Step-Reward-Training', 'Real Push and Grasp, VPG', window=150)
# best_dict, current_dict = plot_it('./logs/2020-02-14-15-24-00_Sim-Rows-SPOT-Trial-Reward-Common-Sense-Testing', 'Sim Rows, SPOT Trial Reward, Common Sense, Testing', window=None)
# Sim stats for final paper:
# best_dict, current_dict = plot_it('./logs/2020-02-11-15-53-12_Sim-Push-and-Grasp-Two-Step-Reward-Testing', 'Sim Push & Grasp, VPG, Challenging Arrangements', window=None, num_preset_arrangements=11)
# best_dict, current_dict = plot_it('./logs/2020-02-12-21-10-24_Sim-Rows-SPOT-Trial-Reward-Common-Sense-Testing', 'Sim Rows, SPOT Trial Reward, Common Sense, Testing', window=563)
# print(best_dict)
# log_dir = './logs/2020-01-20-11-40-56_Sim-Push-and-Grasp-Trial-Reward-Training'
# log_dir = './logs/2020-01-20-14-25-13_Sim-Push-and-Grasp-Trial-Reward-Training'
# log_dir = './logs/2020-02-03-14-47-16_Sim-Stack-Trial-Reward-Common-Sense-Training'
# plot_it('./logs/2020-02-10-14-57-07_Real-Stack-SPOT-Trial-Reward-Common-Sense-Training','Real Stack, SPOT Reward, Common Sense, Training', window=200, max_iter=1000)
# #############################################################
# # REAL ROBOT STACKING run
# plot_it('./logs/2020-02-09-11-02-57_Real-Stack-SPOT-Trial-Reward-Common-Sense-Training','Real Stack, SPOT-Q Dynamic Action Space, Training', window=500, max_iter=2500, apply_real_robot_speckle_noise_hotfix=True)
# # Max trial success rate: 0.5833333333333334, at action iteration: 449. (total of 737 actions, max excludes first 200 actions)
# # Max grasp success rate: 0.794392523364486, at action iteration: 289. (total of 750 actions, max excludes first 200 actions)
# # Max place success rate: 0.7582417582417582, at action iteration: 119. (total of 751 actions, max excludes first 200 actions)
# # Max action efficiency: 0.3, at action iteration: 37. (total of 751 actions, max excludes first 200 actions)
# #############################################################
# # Here is the good & clean simulation common sense push & grasp densenet plot with SPOT reward, run on the costar workstation.
# # It can basically complete trials 100% of the time within 400 actions!
# plot_it('./logs/2020-02-07-14-43-44_Sim-Push-and-Grasp-Trial-Reward-Common-Sense-Training','Sim Push and Grasp, SPOT Reward, Common Sense, Training', window=200, max_iter=2500)
# # plot_it(log_dir, log_dir, window=window, max_iter=max_iter)
# #############################################################
# # ABSOLUTE BEST STACKING RUN AS OF 2020-02-04, on costar workstation
# log_dir = './logs/2020-02-03-16-57-28_Sim-Stack-Trial-Reward-Common-Sense-Training'
# # plot_it(log_dir, 'Sim Stack, Trial Reward, Common Sense, Training', window=window, max_iter=max_iter)
# plot_it(log_dir,'Sim Stack, SPOT Reward, Common Sense, Training', window=window, max_iter=4000)
# #############################################################
# log_dir = './logs/2020-01-22-19-10-50_Sim-Push-and-Grasp-Two-Step-Reward-Training'
# log_dir = './logs/2020-01-22-22-50-00_Sim-Push-and-Grasp-Two-Step-Reward-Training'
# log_dir = './logs/2020-02-03-17-35-43_Sim-Push-and-Grasp-Two-Step-Reward-Training'
# log_dir = './logs/2020-02-06-14-41-48_Sim-Stack-Trial-Reward-Common-Sense-Training'
# plot_it(log_dir, log_dir, window=window, max_iter=max_iter)
# # log_dir = './logs/2019-12-31-20-17-06'
# # log_dir = './logs/2020-01-01-14-55-17'
# log_dir = './logs/2020-01-08-17-03-58'
# log_dir = './logs/2020-01-08-17-03-58-test-resume'
# # Stacking 0.
# log_dir = './logs/2020-01-12-12-33-41'
# # Creating data logging session: /home/costar/src/real_good_robot/logs/2020-01-12-12-33-41 # this run had a problem
# # ± /usr/bin/python3 /home/costar/src/real_good_robot/main.py --is_sim --obj_mesh_dir objects/blocks --num_obj 8 --push_rewards --experience_replay --explore_rate_decay --trial_reward --save_visualizations --skip_noncontact_actions --check_z_height --tcp_port 19997 --place --future_reward_discount 0.65
# # Creating data logging session: /home/costar/src/real_good_robot/logs/2020-01-12-17-56-46
# # log_dir = './logs/2020-01-13-10-15-49' # this run stopped after 1750 actions
# # Creating data logging session: /home/costar/src/real_good_robot/logs/2020-01-13-10-15-49 # stopped after 1750 actions
# log_dir = './logs/2020-01-14-18-36-16'
# # Creating data logging session: /home/costar/src/real_good_robot/logs/2020-01-14-18-36-16
# log_dir = './logs/2020-01-15-15-44-39'
# title = 'Stack 4 Blocks, Trial Reward 0.65, Training'
# # plot_it(log_dir, title, window=window, max_iter=max_iter, place=True)
# plot_it(log_dir, title, window=window, max_iter=max_iter, place=True)
# # this is a solid but slow training trial_reward grasp and push run without symmetry
# # title = 'Push and Grasp, Trial Reward, No Symmetry, Training'
# # log_dir = './logs/2020-01-06-19-15-55'
# # plot_it(log_dir, title, window=window, max_iter=max_iter, place=False)
# run = 2
# if run == 0:
# title = 'Rows, Trial Reward 0.5, No Symmetry, Training'
# # log_dir = './logs/2020-01-07-17-53-42' # some progress, not complete
# # log_dir = './logs/2020-01-08-17-08-57' # run killed early
# log_dir = './logs/2020-01-09-12-54-53'
# # Training iteration: 22769
# # Current count of pixels with stuff: 2513.0 threshold below which the scene is considered empty: 1200
# # WARNING variable mismatch num_trials + 1: 3118 nonlocal_variables[stack].trial: 3359
# # Change detected: True (value: 2799)
# # Primitive confidence scores: 4.359684 (push), 2.701111 (grasp), 4.351819 (place)
# # Strategy: exploit (exploration probability: 0.100000)
# # Action: push at (1, 99, 10)
# # Real Robot push at (-0.704000, -0.026000, 0.000994) angle: 0.392699
# # Trainer.get_label_value(): Current reward: 0.750000 Current reward multiplier: 1.000000 Predicted Future reward: 4.402410 Expected reward: 0.750000 + 0.500000 x 4.402410 = 2.951205
# # Trial logging complete: 3117 --------------------------------------------------------------
# # Training loss: 0.897331
# # /home/ahundt/src/real_good_robot/logs/2020-01-08-18-16-12
# plot_it(log_dir, title, window=window, max_iter=max_iter, place=True)
# if run == 1:
# title = 'Rows, Trial Reward 0.65, No Symmetry, Training'
# # ± export CUDA_VISIBLE_DEVICES="0" && python3 main.py --is_sim --obj_mesh_dir 'objects/blocks' --num_obj 4 --push_rewards --experience_replay --explore_rate_decay --trial_reward --tcp_port 19997 --place --check_row --future_reward_discount 0.65
# # Creating data logging session: /home/ahundt/src/real_good_robot/logs/2020-01-11-19-54-58
# log_dir = './logs/2020-01-11-19-54-58'
# # /home/ahundt/src/real_good_robot/logs/2020-01-08-18-16-12
# plot_it(log_dir, title, window=window, max_iter=max_iter, place=True)
# if run == 2:
# title = 'Rows, Trial Reward 0.65, No Symmetry, Training'
# # ± export CUDA_VISIBLE_DEVICES="0" && python3 main.py --is_sim --obj_mesh_dir 'objects/blocks' --num_obj 4 --push_rewards --experience_replay --explore_rate_decay --trial_reward --tcp_port 19997 --place --check_row --future_reward_discount 0.65
# # Creating data logging session: /home/ahundt/src/real_good_robot/logs/2020-01-12-17-42-46
# # Creating data logging session: /home/ahundt/src/real_good_robot/logs/2020-01-12-17-45-22
# log_dir = './logs/2020-01-12-17-45-22'
# plot_it(log_dir, title, window=window, max_iter=max_iter, place=True)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。