代码拉取完成,页面将自动刷新
import numpy as np
from jsonargparse import ArgumentParser, ActionConfigFile
import json
from tqdm import tqdm
import pdb
import pathlib
from matplotlib import pyplot as plt
import pickle as pkl
from spacy.tokenizer import Tokenizer
from spacy.lang.en import English
import torch
from torch.nn import functional as F
nlp = English()
np.random.seed(12)
torch.manual_seed(12)
PAD = "<PAD>"
class NavigationImageTrajectory:
def __init__(self,
image_path: np.array,
path: np.array,
command: str,
tokenizer: Tokenizer,
max_len: int = 40,
image_size: int = 512,
width: int = 8):
self.image_path = image_path
self.tokenizer = tokenizer
self.traj_vocab = set()
self.lengths = []
self.command = self.tokenize(command)[0:max_len]
self.path_state = np.zeros((image_size, image_size)).astype(int)
# convert path to int
self.path = path * 100
self.path = self.path.astype(int)
self.width = width
self.start_pos = self.path[0]
for x, y in self.path:
self.path_state[x-self.width:x+self.width, y-self.width:y+self.width] = 1
self.tensorize()
def tokenize(self, command):
# lowercase everything
command = [str(x).lower() for x in self.tokenizer(command)]
self.lengths = [len(command)]
# add to vocab
self.traj_vocab |= set(command)
return command
def tensorize(self):
#self.image = plt.imread(self.image_path)
#self.image = torch.tensor(self.image, dtype = torch.long).unsqueeze(0)
self.path_state = torch.tensor(self.path_state, dtype = torch.uint8).unsqueeze(0)
self.start_pos = torch.tensor(self.start_pos, dtype = torch.long).unsqueeze(0)
class NavigationDatasetReader:
def __init__(self,
dir: str,
out_path: str,
path_width: int = 8,
read_limit: int = -1,
batch_size: int = 64,
max_len: int = 40,
tokenizer: Tokenizer = Tokenizer(nlp.vocab),
shuffle: bool = True,
is_bert: bool = False,
overfit: bool = False):
self.path_width = path_width
self.dir = pathlib.Path(dir)
self.pkl_dir = self.dir.joinpath("data/simulator_basic/")
self.image_dir = self.dir.joinpath("configs/env_img/simulator/")
self.train_json = self.dir.joinpath("configs/train_annotations_6000.json")
self.test_json = self.dir.joinpath("configs/test_annotations_6000.json")
self.dev_json = self.dir.joinpath("configs/dev_annotations_6000.json")
self.trajectory_class = NavigationImageTrajectory
self.batch_size = batch_size
self.shuffle = shuffle
self.max_len = max_len
self.tokenizer = tokenizer
self.read_limit = read_limit
self.is_bert = is_bert
self.overfit = overfit
self.out_path = pathlib.Path(out_path)
self.train_out_path = self.out_path.joinpath("train")
self.dev_out_path = self.out_path.joinpath("dev")
self.test_out_path = self.out_path.joinpath("test")
for p in [self.train_out_path, self.dev_out_path, self.test_out_path]:
if not p.exists():
p.mkdir()
self.path_dict = {"train": self.train_out_path,
"test": self.test_out_path,
"dev": self.dev_out_path}
def make_vocab(self):
with open(self.train_json) as f1:
data = json.load(f1)
print(f"reading vocab...")
for line in tqdm(data):
try:
id = line['id']
pkl_data = pkl.load(open(self.pkl_dir.joinpath(f"supervised_train_data_env_{id}"), "rb"))
for step in pkl_data:
command = step['instruction']
command = [str(x).lower() for x in self.tokenizer(command)]
self.vocab |= set(command)
except FileNotFoundError:
pass
def preprocess_batches(self):
vocab = set()
for name, path in [("train", self.train_json), ("test", self.test_json), ("dev", self.dev_json)]:
print(f"loading data from {path}")
with open(path) as f1:
data = json.load(f1)
skipped = 0
if self.read_limit > -1:
data = data[0:self.read_limit]
line_num = 0
curr_batch = []
batch_num = 0
for line in tqdm(data):
try:
id = line['id']
image_data = plt.imread(self.image_dir.joinpath(f"{id}.png"))
pkl_data = pkl.load(open(self.pkl_dir.joinpath(f"supervised_train_data_env_{id}"), "rb"))
# get unique steps
unique_steps = []
all_commands = [step['instruction'] for step in pkl_data]
unique_commands = set(all_commands)
if len(unique_commands) > 1:
unique_indices = [all_commands.index(c) for c in unique_commands]
else:
unique_indices = [0]
for step_idx in unique_indices:
step = pkl_data[step_idx]
assert(int(step['env_id']) == int(id))
path = step['seg_path']
command = step['instruction']
image_path = self.image_dir.joinpath(f"{id}.png")
if not image_path.exists():
continue
traj = NavigationImageTrajectory(image_path = image_path,
path = path,
command = command,
width = self.path_width,
tokenizer = self.tokenizer,
max_len = self.max_len)
if name == "train":
vocab |= traj.traj_vocab
curr_batch.append(traj)
if line_num % self.batch_size == 0:
ready_batch = self.batchify(curr_batch)
with open(self.path_dict[name].joinpath(f"{batch_num}.pkl"), "wb") as f1:
pkl.dump(ready_batch, f1)
# TODO: remove after debugging
with open(self.path_dict['train'].joinpath("vocab.json"), "w") as f1:
json.dump(list(vocab), f1)
batch_num += 1
curr_batch = []
line_num += 1
except FileNotFoundError:
skipped += 1
continue
# add last incomplete batch
if len(curr_batch)>0:
ready_batch = self.batchify(curr_batch)
with open(self.path_dict[name].joinpath(f"{batch_num+1}.pkl"), "wb") as f1:
pkl.dump(ready_batch, f1)
print(f"skipped {skipped} of {len(data)}: {100*skipped/len(data):.2f}%")
with open(self.path_dict['train'].joinpath("vocab.json"), "w") as f1:
json.dump(list(vocab), f1)
#if self.overfit:
# self.all_data['train'] = self.all_data['train'][0:self.read_limit]
# self.all_data['dev'] = self.all_data['train']
def batchify(self, batch_as_list):
"""
pad and tensorize
"""
commands = []
input_image = []
path_state = []
start_position = []
# get max len
if not self.is_bert:
max_length = min(self.max_len, max([traj.lengths[0] for traj in batch_as_list]))
else:
max_length = self.max_len
length = []
image_paths = []
for idx in range(len(batch_as_list)):
traj = batch_as_list[idx]
# trim!
if len(traj.command) > max_length:
traj.command = traj.command[0:max_length]
length.append(len(traj.command))
image_paths.append(traj.image_path)
commands.append(traj.command + [PAD for i in range(max_length - len(traj.command))])
#input_image.append(traj.image)
path_state.append(traj.path_state)
start_position.append(traj.start_pos)
#input_image = torch.cat(input_image, 0)
path_state = torch.cat(path_state, 0)
start_position = torch.cat(start_position, 0)
return {"command": commands,
"image_paths": image_paths,
"path_state": path_state,
"start_position": start_position,
"length": length}
def pad_command(self, commands, max_len):
for i, c in enumerate(commands):
c = c[0:max_len]
l = len(c)
c = c + [PAD for i in range(max_len - l)]
commands[i] = c
return commands
def read(self, split, limit=None):
path = self.path_dict[split]
all_batches = path.glob("*.pkl")
if self.shuffle and split == "train":
np.random.shuffle(all_batches)
if limit is not None:
all_batches = list(all_batches)[0:limit]
for batch in all_batches:
with open(batch, "rb") as f1:
batch_data = pkl.load(f1)
image_paths = batch_data['image_paths']
image_data = [torch.tensor(plt.imread(p), dtype=torch.float64).unsqueeze(0) for p in image_paths]
batch_data['input_image'] = torch.cat(image_data, dim=0)
if self.is_bert:
batch_data['command'] = self.pad_command(batch_data['command'], self.max_len)
yield batch_data
def configure_parser():
parser = ArgumentParser()
# config file
parser.add_argument("--cfg", action = ActionConfigFile)
# training
parser.add_argument("--test", action="store_true", help="load model and test")
parser.add_argument("--resume", action="store_true", help="resume training a model")
parser.add_argument("--overfit", action="store_true", help="overfit to training data for development")
# data
parser.add_argument("--data-dir", type=str, default = "/srv/local2/estengel/nav_data/drif_workspace_corl2019", help="path to train data")
parser.add_argument("--out-path", type=str, default = "/srv/local2/estengel/nav_data/preprocessed", help = "path to write preprocessed batches")
parser.add_argument("--batch-size", type=int, default = 32)
parser.add_argument("--small-batch-size", type=int, default = 8)
parser.add_argument("--max-len", type=int, default = 65)
parser.add_argument("--resolution", type=int, help="resolution to discretize input state", default=64)
parser.add_argument("--channels", type=int, default=3)
parser.add_argument("--split-type", type=str, choices= ["random", "leave-out-color",
"train-stack-test-row",
"train-row-test-stack"],
default="random")
parser.add_argument("--shuffle", action = "store_true")
parser.add_argument("--read-limit", type=int, default=-1)
parser.add_argument("--path-width", type=int, default=8)
parser.add_argument("--output-type", type=str, default="per-patch")
parser.add_argument("--validation-limit", type=int, default=16, help = "how many dev batches to evaluate every n steps ")
# language embedder
parser.add_argument("--embedder", type=str, default="random", choices = ["random", "glove", "bert-base-cased", "bert-base-uncased"])
parser.add_argument("--embedding-file", type=str, help="path to pretrained glove embeddings")
parser.add_argument("--embedding-dim", type=int, default=300)
# transformer parameters
parser.add_argument("--encoder-type", type=str, default="TransformerEncoder", choices = ["TransformerEncoder", "ResidualTransformerEncoder"], help = "choice of dual-stream transformer encoder or one that bases next prediction on previous transformer representation")
parser.add_argument("--pos-encoding-type", type = str, default="fixed-separate")
parser.add_argument("--patch-size", type=int, default = 8)
parser.add_argument("--n-layers", type=int, default = 6)
parser.add_argument("--n-classes", type=int, default = 2)
parser.add_argument("--n-heads", type= int, default = 8)
parser.add_argument("--hidden-dim", type= int, default = 512)
parser.add_argument("--ff-dim", type = int, default = 1024)
parser.add_argument("--dropout", type=float, default=0.2)
parser.add_argument("--embed-dropout", type=float, default=0.2)
parser.add_argument("--pretrained-weights", type=str, default=None, help = "path to best.th file for a pre-trained initialization")
parser.add_argument("--locality-mask", type=bool, default = False, action='store_true', help="mask image transformer to only attend to nearby regions")
parser.add_argument("--locality-neighborhood", type=int, default = 5, help="size of the region to attend to in locality masking, extends in each direction from the center point")
# misc
parser.add_argument("--cuda", type=int, default=None)
parser.add_argument("--learn-rate", type=float, default = 3e-5)
parser.add_argument("--warmup", type=int, default=4000, help = "warmup setps for learn-rate scheduling")
parser.add_argument("--lr-factor", type=float, default = 1.0, help = "factor for learn-rate scheduling")
parser.add_argument("--gamma", type=float, default = 0.7)
parser.add_argument("--checkpoint-dir", type=str, default="models/language_pretrain")
parser.add_argument("--num-models-to-keep", type=int, default = 5)
parser.add_argument("--num-epochs", type=int, default=3)
parser.add_argument("--generate-after-n", type=int, default=10)
parser.add_argument("--score-type", type=str, default="acc", choices = ["acc", "block_acc", "tele_score"])
parser.add_argument("--zero-weight", type=float, default = 0.05, help = "weight for loss weighting negative vs positive examples")
parser.add_argument("--init-scale", type=int, default = 4, help = "initalization scale for transformer weights")
parser.add_argument("--checkpoint-every", type=int, default=64, help = "save a checkpoint every n training steps")
parser.add_argument("--seed", type=int, default=12)
parser.add_argument("--debug-image-top-k", type=int, default=-1, help = "for generating debugging images, only show the top k regions")
parser.add_argument("--debug-image-threshold", type=float, default=-1, help = "for generating debugging images, only predicted patches above a fixed threshold")
return parser
if __name__ == "__main__":
np.random.seed(12)
torch.manual_seed(12)
parser = configure_parser()
args = parser.parse_args()
nlp = English()
tokenizer = Tokenizer(nlp.vocab)
dataset_reader = NavigationDatasetReader(dir = args.data_dir,
out_path=args.out_path,
path_width = args.path_width,
read_limit = args.read_limit,
batch_size = args.batch_size,
max_len = args.max_len,
tokenizer = tokenizer,
shuffle = args.shuffle,
overfit = args.overfit,
is_bert = "bert" in args.embedder)
dataset_reader.preprocess_batches()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。