代码拉取完成,页面将自动刷新
import torch
from torch.nn import functional as F
import numpy as np
import math
import pdb
import copy
np.set_printoptions(linewidth=400, edgeitems=400)
np.random.seed(12)
torch.manual_seed(12)
class MSEMetric():
def __call__(self, true, pred):
total = 0
total_mse = 0
true = true.reshape(-1).detach().cpu().numpy()
pred = pred.reshape(-1).detach().cpu().numpy()
mse_val = (true - pred)**2
mse_avg = np.mean(mse_val)
return mse_avg
class AccuracyMetric():
def __call__(self, true, pred):
pred_idxs = torch.argmax(pred, dim = 2).detach().cpu()
tp = torch.eq(true, pred_idxs)
tp = tp.detach().cpu().numpy()
return np.mean(tp)
class EuclideanMetric:
def __init__(self,
block_size: int = 4,
image_size: int = 64):
self.block_size = block_size
self.image_size = image_size
def get_euclidean_distance(self, c1, c2):
return np.sqrt((c1[0] - c2[0])**2 + (c1[1] - c2[1])**2)
def get_block_center(self, block_image, has_batch = False):
block_image = block_image.reshape(self.image_size, self.image_size)
for row_idx in range(block_image.shape[0]):
for col_idx in range(block_image.shape[1]):
#first one is top left corner
if block_image[row_idx, col_idx].item() == 1:
center = (row_idx + self.block_size/2, col_idx + self.block_size/2)
return center
# should never happen
return (self.block_size/2, self.block_size/2)
class F1Metric:
def __init__(self, mask=False):
self.mask = mask
def compute_f1(self, true_pos, pred_pos):
eps = 1e-8
values, pred_pixels = torch.max(pred_pos, dim=1)
gold_pixels = true_pos
pred_pixels = pred_pixels.unsqueeze(-1)
if self.mask:
# where there is no block, automatically put down a 0
zero_mask = true_pos == 0
zero_mask = zero_mask.reshape(pred_pixels.shape)
pred_pixels[zero_mask] = 0
pred_pixels = pred_pixels.detach().cpu().float()
gold_pixels = gold_pixels.detach().cpu().float()
total_pixels = sum(pred_pixels.shape)
true_pos = torch.sum(pred_pixels * gold_pixels).item()
true_neg = torch.sum((1-pred_pixels) * (1 - gold_pixels)).item()
false_pos = torch.sum(pred_pixels * (1 - gold_pixels)).item()
false_neg = torch.sum((1-pred_pixels) * gold_pixels).item()
precision = true_pos / (true_pos + false_pos + eps)
recall = true_pos / (true_pos + false_neg + eps)
f1 = 2 * (precision * recall) / (precision + recall + eps)
return precision, recall, f1
class TransformerEuclideanMetric(EuclideanMetric):
def __init__(self,
block_size: int = 4,
image_size: int = 64,
patch_size: int = 4):
super(TransformerEuclideanMetric, self).__init__(block_size = block_size, image_size=image_size)
self.block_size = block_size
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = (image_size // patch_size)**2
self.num_patches_per_row = int(math.sqrt(self.num_patches))
def get_patch_center(self, patch_idx):
# get upper left corner coord
patch_row = patch_idx // self.num_patches_per_row
patch_col = patch_idx % self.num_patches_per_row
image_row = self.patch_size * patch_row
image_col = self.patch_size * patch_col
patch_center = (image_row + self.patch_size / 2, image_col + self.patch_size / 2)
return patch_center, (image_row, image_col)
class TeleportationMetric:
def __init__(self,
block_size: int = 4):
self.block_size = block_size
class TransformerTeleportationMetric(TeleportationMetric):
def __init__(self,
block_size: int = 4,
image_size: int = 64,
patch_size: int = 4):
super(TransformerTeleportationMetric, self).__init__(block_size)
self.image_size = image_size
self.patch_size = patch_size
self.euclid = TransformerEuclideanMetric(block_size=block_size,
image_size=image_size,
patch_size=patch_size)
def select_prev_block(self, mask, true_prev_image, pred_prev_image):
c, w, h, __ = pred_prev_image.shape
if c == 2:
pred_prev_image = F.softmax(pred_prev_image, dim=0)[1,:,:,:]
elif c == 1:
pred_prev_image = pred_prev_image[0,:,:,:]
else:
raise AssertionError(f"Wrong number of channels: expected 1 or 2, got {c}")
# overlap
pred_prev_image *= mask.squeeze(0)
# get max pixel
row_values, row_indices = torch.max(pred_prev_image, dim=0)
col_values, col_idx = torch.max(row_values, dim=0)
row_idx = row_indices[col_idx]
pred_block_id = true_prev_image[0, row_idx, col_idx, 0].item()
return pred_block_id, (row_idx, col_idx), pred_prev_image[row_idx, col_idx, 0]
def select_next_location(self, pred_patches):
n, c, __ = pred_patches.shape
if c == 2:
pred_patches = pred_patches[:,1,0]
elif c == 1:
pred_patches = pred_patches[:,0,0]
else:
raise AssertionError(f"Wrong number of channels: expected 1 or 2, got {c}")
max_patch_idx = torch.argmax(pred_patches, dim = 0).item()
patch_center, patch_lc = self.euclid.get_patch_center(max_patch_idx)
return patch_center, patch_lc
def execute_move(self, pred_corner, pred_idx, true_prev_image):
# if pred_idx != true_idx, then true block doesn't move from previous location
# zero-out true location of pred block
true_prev_image[true_prev_image==pred_idx] = 0
# add in block at pred location
true_prev_image[0, pred_corner[0]:pred_corner[0] + self.block_size, pred_corner[1]: pred_corner[1] + self.block_size, 0] = pred_idx
return true_prev_image
def compute_distance(self, pred_block_corner, prev_block_id, block_to_move, true_prev_image, true_next_image):
# execute the move on the previous state
pred_next_image = self.execute_move(pred_block_corner, prev_block_id, true_prev_image)
# filter to be 1-0
true_next_image_oh = true_next_image.clone()
pred_next_image_oh = pred_next_image.clone()
true_next_image_oh[true_next_image != block_to_move] = 0
true_next_image_oh[true_next_image == block_to_move] = 1
pred_next_image_oh[pred_next_image != block_to_move] = 0
pred_next_image_oh[pred_next_image == block_to_move] = 1
# get centers
true_block_center = self.euclid.get_block_center(true_next_image_oh)
pred_block_center = self.euclid.get_block_center(pred_next_image_oh)
distance_pix = self.euclid.get_euclidean_distance(pred_block_center, true_block_center)
# convert to distance in block_lengths
distance_normalized = distance_pix / self.block_size
return distance_normalized, pred_block_center, true_block_center
def get_metric(self, true_next_image, true_prev_image, pred_prev_image, pred_next_patches, block_to_move, next_xyz = None):
true_next_image = true_next_image.detach().cpu()
true_prev_image = true_prev_image.detach().cpu()
pred_prev_image = pred_prev_image.detach().cpu()
pred_next_patches = pred_next_patches.detach().cpu()
w, h, __, __ = true_next_image.shape
true_next_image = true_next_image.reshape(1, w, h, 1)
true_prev_image = true_prev_image.reshape(1, w, h, 1)
# filter to 1-0
true_prev_image_oh = true_prev_image.clone()
true_prev_image_oh[true_prev_image_oh != 0] = 1
# get a block id to move
prev_block_id, pred_idx, pred_value = self.select_prev_block(true_prev_image_oh, true_prev_image, pred_prev_image)
if next_xyz is None:
# get the center of the most likely next location, to move the block to
pred_block_center, pred_block_corner = self.select_next_location(pred_next_patches)
else:
next_xyz = next_xyz.detach().cpu()
pred_block_corner = np.array([next_xyz[1], next_xyz[2]])
pred_block_corner += 1
pred_block_corner /= 2
# TODO(elias) replace with resolution
pred_block_corner *= 64
pred_block_corner = np.rint(pred_block_corner).astype(int)
#pred_block_corner = [int(x) for x in pred_block_corner]
# map from -1 to 1 to 0
distance_normalized, pred_block_center, true_block_center = self.compute_distance(pred_block_corner, prev_block_id, block_to_move, true_prev_image, true_next_image)
# given gold source block, what is predicted distance
distance_oracle_source, __, __ = self.compute_distance(pred_block_corner, block_to_move, block_to_move, true_prev_image, true_next_image)
block_acc = 1 if block_to_move == prev_block_id else 0
to_ret = {"distance": distance_normalized,
"oracle_distance": distance_oracle_source,
"block_acc": block_acc,
"pred_center": pred_block_center,
"true_center": true_block_center}
return to_ret
class UNetTeleportationMetric(TransformerTeleportationMetric):
def __init__(self, block_size = 4, image_size = 64):
super(UNetTeleportationMetric, self).__init__(block_size = 4,
image_size = image_size,
patch_size = -1)
self.euclid = EuclideanMetric(block_size = block_size,
image_size = image_size)
def select_next_location(self, pred_next_image):
pred_next_image = F.softmax(pred_next_image,dim=0)[1,:,:,:]
row_values, row_indices = torch.max(pred_next_image, dim=0)
col_values, col_idx = torch.max(row_values, dim=0)
row_idx = row_indices[col_idx]
row_idx = row_idx.long().item()
col_idx = col_idx.long().item()
patch_center = (row_idx, col_idx)
patch_lc = (row_idx - int(self.block_size/2), col_idx - int(self.block_size/2))
return patch_center, patch_lc
def get_metric(self, true_next_image, true_prev_image, pred_prev_image, pred_next_image, block_to_move):
true_next_image = true_next_image.detach().cpu()
true_prev_image = true_prev_image.detach().cpu()
pred_prev_image = pred_prev_image.detach().cpu()
pred_next_image = pred_next_image.detach().cpu()
w, h, __, __ = true_next_image.shape
true_next_image = true_next_image.reshape(1, w, h, 1)
true_prev_image = true_prev_image.reshape(1, w, h, 1)
# filter to 1-0
true_prev_image_oh = true_prev_image.clone()
true_prev_image_oh[true_prev_image_oh != 0] = 1
# get a block id to move
prev_block_id, pred_idx, pred_value = self.select_prev_block(true_prev_image_oh, true_prev_image, pred_prev_image)
# get the center of the most likely next location, to move the block to
pred_block_center, pred_block_corner = self.select_next_location(pred_next_image)
distance_normalized, pred_block_center, true_block_center = self.compute_distance(pred_block_corner, prev_block_id, block_to_move, true_prev_image, true_next_image)
# given gold source block, what is predicted distance
distance_oracle_source, __, __ = self.compute_distance(pred_block_corner, block_to_move, block_to_move, true_prev_image, true_next_image)
block_acc = 1 if block_to_move == prev_block_id else 0
to_ret = {"distance": distance_normalized,
"oracle_distance": distance_oracle_source,
"block_acc": block_acc,
"pred_center": pred_block_center,
"true_center": true_block_center}
return to_ret
class GoodRobotTransformerTeleportationMetric(TransformerTeleportationMetric):
def __init__(self,
block_size: int = 4,
image_size: int = 64,
patch_size: int = 4):
super(GoodRobotTransformerTeleportationMetric, self).__init__(block_size, image_size, patch_size)
#self.color_to_idx = {"red":1, "blue": 2, "green": 3, "yellow": 4}
self.color_to_idx = {"red":1, "blue": 2, "green": 3, "yellow": 4, "brown": 5, "orange": 6, "gray": 7, "purple": 8, "cyan": 9, "pink": 10}
self.idx_to_color = {v:k for k,v in self.color_to_idx.items()}
self.block_ratio = 9/64
def compute_distance(self, pred_block_corner, prev_block_id, block_to_move, pair, place_location):
# execute the move on the previous state
pred_next_image = self.execute_move(pred_block_corner, prev_block_id, pair.prev_state_image)
# filter to be 1-0
true_next_image_oh = true_next_image.clone()
true_next_image_oh[true_next_image != block_to_move] = 0
true_next_image_oh[true_next_image == block_to_move] = 1
pred_next_image_oh[pred_next_image != block_to_move] = 0
pred_next_image_oh[pred_next_image == block_to_move] = 1
# get centers
true_block_center = self.euclid.get_block_center(true_next_image_oh)
pred_block_center = self.euclid.get_block_center(pred_next_image_oh)
distance_pix = self.euclid.get_euclidean_distance(pred_block_center, true_block_center)
# convert to distance in block_lengths
distance_normalized = distance_pix / self.block_size
return distance_normalized, pred_block_center, true_block_center
def select_prev_block(self, pair, pred_prev_image):
c, w, h = pred_prev_image.shape
if c == 2:
pred_prev_image = F.softmax(pred_prev_image, dim=0)[1,:,:]
elif c == 1:
pred_prev_image = pred_prev_image[0,:,:]
else:
raise AssertionError(f"Wrong number of channels: expected 1 or 2, got {c}")
mask = np.copy(pair.prev_state_image)
mask[mask != 0] = 1
pred_prev_image_before = pred_prev_image.clone()
pred_prev_image *= mask
# get max pixel
row_values, row_indices = torch.max(pred_prev_image, dim=0)
col_values, col_idx = torch.max(row_values, dim=0)
row_idx = row_indices[col_idx]
true_prev_image = pair.prev_state_image
pred_block_id = true_prev_image[row_idx, col_idx].item()
# might be no regions predicted
if pred_block_id == 0:
#print(f"selecting block 1")
pred_block_id = 1
return pred_block_id, (row_idx, col_idx), pred_prev_image[row_idx, col_idx]
def execute_move(self, pred_corner, pred_idx, json_data):
# if pred_idx != true_idx, then true block doesn't move from previous location
pred_color = self.idx_to_color[int(pred_idx)]
json_data = copy.deepcopy(json_data)
json_data[pred_color] = pred_corner
return json_data
def compute_distance(self, pred_block_loc, prev_block_id, pair, block_size):
json_data = copy.deepcopy(pair.json_data)
true_block_loc = pair.next_location
# swap
pred_x, pred_y = copy.deepcopy(pred_block_loc)
pred_x, pred_y = pred_y, pred_x
pred_block_loc = [pred_x, pred_y]
distance_pix = self.euclid.get_euclidean_distance(pred_block_loc, true_block_loc[0:2])
# convert to distance in block_lengths
distance_normalized = distance_pix / block_size
return distance_normalized
def convert_to_loc(self, state):
offset = [0.15, 0.0, 0.0]
grid_dim = 14
side_len = 0.035
x_offset = 0.58
grid_len = grid_dim*side_len
state = np.array(state)
state[0] += x_offset
for i in range(len(state)):
state[i] = (state[i] * 2) / grid_len - offset[i]
state = (state + 1)/2 * self.image_size
return state.astype(int)
def select_next_location(self, pred_next_image):
pred_next_image = F.softmax(pred_next_image,dim=0)[1,:,:]
row_values, row_indices = torch.max(pred_next_image, dim=0)
col_values, col_idx = torch.max(row_values, dim=0)
row_idx = row_indices[col_idx]
row_idx = row_idx.long().item()
col_idx = col_idx.long().item()
patch_center = (row_idx, col_idx)
#patch_lc = (row_idx - int(self.block_size/2), col_idx - int(self.block_size/2))
patch_lc = None
return patch_center, patch_lc
def get_metric(self, pair, pred_prev_image, pred_next_patches):
pair = copy.deepcopy(pair)
pair.resolution = self.image_size
pair.resize()
pred_prev_image = pred_prev_image.detach().cpu()
pred_next_patches = pred_next_patches.detach().cpu()
# get a block id to move
prev_block_id, pred_idx, pred_value = self.select_prev_block(pair, pred_prev_image)
# get the center of the most likely next location, to move the block to
pred_block_center, pred_block_corner = self.select_next_location(pred_next_patches)
block_size = int(self.block_ratio * self.image_size)
distance_normalized = self.compute_distance(pred_block_center, prev_block_id, pair, block_size)
true_block_center = pair.next_location
block_to_move = self.color_to_idx[pair.source_code]
block_acc = 1 if block_to_move == prev_block_id else 0
to_ret = {"distance": distance_normalized,
#"oracle_distance": distance_oracle_source,
"block_acc": block_acc,
"pred_center": pred_block_center,
"true_center": true_block_center}
return to_ret
class GoodRobotUNetTeleportationMetric(GoodRobotTransformerTeleportationMetric):
def __init__(self,
block_size: int = 4,
image_size: int = 64):
super(GoodRobotUNetTeleportationMetric, self).__init__(block_size, image_size, -1)
def select_next_location(self, pred_next_image):
pred_next_image = F.softmax(pred_next_image,dim=0)[1,:,:,:]
row_values, row_indices = torch.max(pred_next_image, dim=0)
col_values, col_idx = torch.max(row_values, dim=0)
row_idx = row_indices[col_idx]
row_idx = row_idx.long().item()
col_idx = col_idx.long().item()
patch_center = (row_idx, col_idx)
patch_lc = (row_idx - int(self.block_size/2), col_idx - int(self.block_size/2))
return patch_center, patch_lc
def get_metric(self, pair, pred_prev_image, pred_next_image):
pair = copy.deepcopy(pair)
pair.resolution = self.image_size
pair.resize()
pred_prev_image = pred_prev_image.detach().cpu()
pred_next_image = pred_next_image.detach().cpu()
# get a block id to move
pred_prev_image = pred_prev_image.squeeze(-1)
prev_block_id, pred_idx, pred_value = self.select_prev_block(pair, pred_prev_image)
# get the center of the most likely next location, to move the block to
pred_block_center, pred_block_corner = self.select_next_location(pred_next_image)
block_size = int(self.block_ratio * self.image_size)
distance_normalized = self.compute_distance(pred_block_center, prev_block_id, pair, block_size)
true_block_center = pair.next_location
block_to_move = self.color_to_idx[pair.source_code]
block_acc = 1 if block_to_move == prev_block_id else 0
to_ret = {"distance": distance_normalized,
#"oracle_distance": distance_oracle_source,
"block_acc": block_acc,
"pred_center": pred_block_center,
"true_center": true_block_center}
return to_ret
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。