代码拉取完成,页面将自动刷新
import numpy as np
from scipy import ndimage
import os
import argparse
import cv2
import torch
from collections import OrderedDict
from utils import ACTION_TO_ID, compute_demo_dist, get_prediction_vis, compute_cc_dist
from trainer import Trainer
from demo import Demonstration, load_all_demos
import pickle
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--example_demo', type=str, help='path to example demo')
parser.add_argument('-d', '--imitation_demo', type=str, help='path to imitation demo')
parser.add_argument('-m', '--metric', default='l2', help='metric to evaluate similarity between demo and current env embeddings')
parser.add_argument('-t', '--task_type', default='custom', help='task type')
parser.add_argument('-s', '--stack_snapshot_file', default=None, help='snapshot file to load for the stacking model')
parser.add_argument('-r', '--row_snapshot_file', default=None, help='snapshot file to load for row model')
parser.add_argument('-u', '--unstack_snapshot_file', default=None, help='snapshot file to load for unstacking model')
parser.add_argument('-v', '--vertical_square_snapshot_file', default=None, help='snapshot file to load for vertical_square model')
parser.add_argument('-c', '--cpu', action='store_true', default=False, help='force cpu')
parser.add_argument('-b', '--blend_ratio', default=0.5, type=float, help='how much to weight background vs similarity heatmap')
parser.add_argument('--cycle_consistency', default=False, action='store_true', help='use cycle consistency to get matching action in demo')
parser.add_argument('--depth_channels_history', default=False, action='store_true', help='use depth channel history when passing frames to model?')
parser.add_argument('--viz', dest='save_visualizations', default=False, action='store_true', help='store depth heightmaps with imitation signal')
parser.add_argument('--write_embed', dest='write_embed', default=False, action='store_true', help='write embeddings to disk')
parser.add_argument('--save_neighborhood', dest='save_neighborhood', default=False, action='store_true', help='save neighborhood around demo action')
parser.add_argument('--neighborhood_size', dest='neighborhood_size', default=5, type=int, help='size of neighborhood to save')
args = parser.parse_args()
# if we want to save neighborhood, make sure some other args are set
if args.save_neighborhood:
args.cycle_consistency = True
args.write_embed = True
# TODO(adit98) may need to make this variable
# Cols: min max, Rows: x y z (define workspace limits in robot coordinates)
workspace_limits = np.asarray([[-0.724, -0.276], [-0.224, 0.224], [-0.0001, 0.5]])
# create viz directory in imitation_demo folder
if args.save_visualizations:
if not os.path.exists(os.path.join(args.imitation_demo, 'correspondences')):
os.makedirs(os.path.join(args.imitation_demo, 'correspondences'))
if args.write_embed:
if not os.path.exists(os.path.join(args.example_demo, 'embeddings')):
os.makedirs(os.path.join(args.example_demo, 'embeddings'))
# create both demo classes
example_demos = load_all_demos(demo_path=args.example_demo, check_z_height=False,
task_type=args.task_type)
imitation_demo = Demonstration(path=args.imitation_demo, demo_num=0,
check_z_height=False, task_type=args.task_type)
# set whether place common sense masks should be used
# TODO(adit98) make this a cmd line argument and think about whether it should ever be set
if args.task_type == 'unstack':
place_common_sense = False
demo_mask = True
place_dilation = 0.05
elif args.task_type == 'stack':
demo_mask = True
place_common_sense = True
place_dilation = 0.00
else:
place_common_sense = True
demo_mask = True
place_dilation = 0.05
# Initialize trainer(s)
stack_trainer, row_trainer, unstack_trainer, vertical_square_trainer = None, None, None, None
# load stacking if provided
if args.stack_snapshot_file is not None:
stack_trainer = Trainer(method='reinforcement', push_rewards=True, future_reward_discount=0.5,
is_testing=True, snapshot_file=args.stack_snapshot_file,
force_cpu=args.cpu, goal_condition_len=0, place=True,
pretrained=True, flops=False, network='densenet',
common_sense=True, place_common_sense=place_common_sense,
show_heightmap=False, place_dilation=0.00,
common_sense_backprop=True, trial_reward='spot',
num_dilation=0)
# load row making if provided
if args.row_snapshot_file is not None:
row_trainer = Trainer(method='reinforcement', push_rewards=True, future_reward_discount=0.5,
is_testing=True, snapshot_file=args.row_snapshot_file,
force_cpu=args.cpu, goal_condition_len=0, place=True,
pretrained=True, flops=False, network='densenet',
common_sense=True, place_common_sense=place_common_sense,
show_heightmap=False, place_dilation=place_dilation,
common_sense_backprop=True, trial_reward='spot',
num_dilation=0)
# load unstack making if provided
if args.unstack_snapshot_file is not None:
unstack_trainer = Trainer(method='reinforcement', push_rewards=True, future_reward_discount=0.5,
is_testing=True, snapshot_file=args.unstack_snapshot_file,
force_cpu=args.cpu, goal_condition_len=0, place=True,
pretrained=True, flops=False, network='densenet',
common_sense=True, place_common_sense=place_common_sense,
show_heightmap=False, place_dilation=place_dilation,
common_sense_backprop=True, trial_reward='spot',
num_dilation=0)
# load vertical_square making if provided
if args.vertical_square_snapshot_file is not None:
vertical_square_trainer = Trainer(method='reinforcement', push_rewards=True, future_reward_discount=0.5,
is_testing=True, snapshot_file=args.vertical_square_snapshot_file,
force_cpu=args.cpu, goal_condition_len=0, place=True,
pretrained=True, flops=False, network='densenet',
common_sense=True, place_common_sense=place_common_sense,
show_heightmap=False, place_dilation=place_dilation,
common_sense_backprop=True, trial_reward='spot', num_dilation=0)
if stack_trainer is None and row_trainer is None and unstack_trainer is None and vertical_square_trainer is None:
raise ValueError("Must provide at least one trained model")
# iterate through action_dict and visualize example signal on imitation heightmaps
# skip last key because there is no grasp/place action associated with it
action_keys = sorted(example_demos[0].action_dict.keys())[:-1]
example_actions_dict = {}
for k in action_keys:
if k not in example_actions_dict:
example_actions_dict[k] = {}
for action in ['grasp', 'place']:
if action not in example_actions_dict[k]:
example_actions_dict[k][action] = {}
for ind, d in enumerate(example_demos):
# get action embeddings from example demo
if ind not in example_actions_dict[k][action]:
example_action_row, example_action_stack, example_action_unstack, example_action_vertical_square, _, demo_action_ind = \
d.get_action(workspace_limits, action, k, stack_trainer=stack_trainer, row_trainer=row_trainer,
unstack_trainer=unstack_trainer, vertical_square_trainer=vertical_square_trainer,
use_hist=args.depth_channels_history, demo_mask=True,
cycle_consistency=args.cycle_consistency)
example_actions_dict[k][action][ind] = [example_action_row, example_action_stack,
example_action_unstack, example_action_vertical_square, demo_action_ind]
# run the correspondence if not writing embeddings
if not args.write_embed:
if action == 'grasp':
im_color, im_depth = imitation_demo.get_heightmaps(action,
imitation_demo.action_dict[k]['grasp_image_ind'], use_hist=args.depth_channels_history)
else:
im_color, im_depth = imitation_demo.get_heightmaps(action,
imitation_demo.action_dict[k]['place_image_ind'], use_hist=args.depth_channels_history)
# create filenames to be saved
depth_filename = os.path.join(args.imitation_demo, 'correspondences',
str(k) + '.' + action + '.depth.png')
color_filename = os.path.join(args.imitation_demo, 'correspondences',
str(k) + '.' + action + '.color.png')
# run forward pass for imitation_demo
stack_preds, row_preds, unstack_preds, vertical_square_preds = None, None, None, None
# get stack features if stack_trainer is provided
if stack_trainer is not None:
# to get vector of 64 vals, run trainer.forward with keep_action_feat
stack_push, stack_grasp, stack_place = stack_trainer.forward(im_color,
im_depth, is_volatile=True, keep_action_feat=True, demo_mask=True)[:3]
# fill all masked arrays (convert to regular np arrays)
stack_push, stack_grasp, stack_place = stack_push.filled(0.0), \
stack_grasp.filled(0.0), stack_place.filled(0.0)
# get row features if row_trainer is provided
if row_trainer is not None:
# to get vector of 64 vals, run trainer.forward with keep_action_feat
row_push, row_grasp, row_place = row_trainer.forward(im_color,
im_depth, is_volatile=True, keep_action_feat=True, demo_mask=True)[:3]
# fill all masked arrays (convert to regular np arrays)
row_push, row_grasp, row_place = row_push.filled(0.0), \
row_grasp.filled(0.0), row_place.filled(0.0)
# get unstack features if unstack_trainer is provided
if unstack_trainer is not None:
# to get vector of 64 vals, run trainer.forward with keep_action_feat
unstack_push, unstack_grasp, unstack_place = unstack_trainer.forward(im_color,
im_depth, is_volatile=True, keep_action_feat=True, demo_mask=True)[:3]
# fill all masked arrays (convert to regular np arrays)
unstack_push, unstack_grasp, unstack_place = unstack_push.filled(0.0), \
unstack_grasp.filled(0.0), unstack_place.filled(0.0)
# get vertical_square features if vertical_square_trainer is provided
if vertical_square_trainer is not None:
# to get vector of 64 vals, run trainer.forward with keep_action_feat
vertical_square_push, vertical_square_grasp, vertical_square_place = \
vertical_square_trainer.forward(im_color, im_depth,
is_volatile=True, keep_action_feat=True, demo_mask=True)[:3]
# fill all masked arrays (convert to regular np arrays)
vertical_square_push, vertical_square_grasp, vertical_square_place = \
vertical_square_push.filled(0.0), vertical_square_grasp.filled(0.0), vertical_square_place.filled(0.0)
# TODO(adit98) add logic for pushing here
if action == 'grasp':
if stack_trainer is not None:
stack_preds = stack_grasp
if row_trainer is not None:
row_preds = row_grasp
if unstack_trainer is not None:
unstack_preds = unstack_grasp
if vertical_square_trainer is not None:
vertical_square_preds = vertical_square_grasp
else:
if stack_trainer is not None:
stack_preds = stack_place
if row_trainer is not None:
row_preds = row_place
if unstack_trainer is not None:
unstack_preds = unstack_place
if vertical_square_trainer is not None:
vertical_square_preds = vertical_square_place
print("Evaluating distance for stack height:", k, "| Action:", action)
# rearrange example actions dictionary into (P, D) array where P is number of policies, D # of demos
example_actions = np.array([*example_actions_dict[k][action].values()], dtype=object).T
# extract demo action inds
demo_action_inds = example_actions[-1].tolist()
# store preds we want to use (after leave one out) in preds, and get relevant example actions
# order of example actions is row, stack, unstack, vertical square
if args.task_type == 'row':
preds = [stack_preds, unstack_preds, vertical_square_preds]
example_actions = example_actions[1:-1].tolist()
elif args.task_type == 'stack':
preds = [row_preds, unstack_preds, vertical_square_preds]
example_actions = example_actions[[0, 2, 3]].tolist()
elif args.task_type == 'unstack':
preds = [row_preds, stack_preds, vertical_square_preds]
example_actions = example_actions[[0, 1, 3]].tolist()
elif args.task_type == 'vertical_square':
preds = [row_preds, stack_preds, unstack_preds]
example_actions = example_actions[:3].tolist()
else:
raise NotImplementedError(args.task_type + ' is not implemented.')
if not args.cycle_consistency:
# evaluate distance based action mask - leave one out is above
im_mask, match_ind, selected_policy = compute_demo_dist(preds=preds, example_actions=example_actions,
metric=args.metric)
else:
# evaluate distance based action mask with cycle consistency
im_mask, match_ind, selected_policy = compute_cc_dist(preds=preds, example_actions=example_actions,
demo_action_inds=demo_action_inds, valid_depth_heightmap=im_depth,
metric=args.metric, cc_match=False)
if args.save_visualizations:
# fix dynamic range of im_depth
im_depth = (im_depth * 255 / np.max(im_depth)).astype(np.uint8)
# visualize with rotation, match_ind
depth_canvas = get_prediction_vis(im_mask, im_depth, match_ind, blend_ratio=args.blend_ratio)
rgb_canvas = get_prediction_vis(im_mask, im_color, match_ind, blend_ratio=args.blend_ratio)
# write blended images
cv2.imwrite(depth_filename, depth_canvas)
cv2.imwrite(color_filename, rgb_canvas)
if args.write_embed:
# pickle dictionary
if not args.cycle_consistency:
name = 'embed_dict_single.pickle'
elif args.save_neighborhood:
# get neighborhood around embedding
name = 'embed_dict_neighb.pickle'
for a in example_actions_dict.keys():
for b in example_actions_dict[a].keys():
for c in example_actions_dict[a][b].keys():
tmp = example_actions_dict[a][b][c]
demo_action = tmp[-1]
for i in range(len(tmp)):
tmp[i] = tmp[demo_action[0], :,
demo_action[1] - args.neighborhood_size:demo_action[1] + args.neighborhood_size + 1,
demo_action[2] - args.neighborhood_size:demo_action[2] + args.neighborhood_size + 2]
else:
name = 'embed_dict.pickle'
file_path = os.path.join(args.example_demo, 'embeddings', name)
with open(file_path, 'wb') as f:
pickle.dump(example_actions_dict, f)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。