代码拉取完成,页面将自动刷新
import numpy as np
import cv2
import os
from utils import ACTION_TO_ID
class Demonstration():
def __init__(self, path, demo_num, check_z_height, task_type='stack'):
try:
# path is expected to be <logs/exp_name>
self.action_log = np.loadtxt(os.path.join(path, 'transitions',
'executed-actions-' + str(demo_num) + '.log.txt'))
except OSError:
raise OSError("Demo Number " + str(demo_num) + " does not exist.")
self.rgb_dir = os.path.join(path, 'data', 'color-heightmaps')
self.depth_dir = os.path.join(path, 'data', 'depth-heightmaps')
self.demo_num = demo_num
self.check_z_height = check_z_height
self.task_type = task_type
# image_names should contain all heightmaps that have demo_num as their poststring
self.image_names = sorted([i for i in os.listdir(self.rgb_dir) if int(i.split('.')[-3]) == demo_num])
# get number of actions in demo
self.num_actions = len(self.action_log)
# check to make sure action log and image_names line up (+1 included to account for final img)
if len(self.image_names) != (self.num_actions + 1):
raise ValueError("MISMATCH: Number of images does not match number of actions in demo for demo number:", demo_num)
# populate actions in dict keyed by action_pair number {action_pair : {action : (x, y, z, theta)}}
# divide num actions by 2 to get number of grasp/place pairs
self.action_dict = {}
# start at 1 since the structure starts with size 1
for progress in range(1, (self.num_actions // 2) + 1):
demo_ind = (progress - 1) * 2
grasp_image_ind = int(self.image_names[demo_ind].split('.')[0])
place_image_ind = int(self.image_names[demo_ind + 1].split('.')[0])
self.action_dict[progress] = {ACTION_TO_ID['grasp'] : self.action_log[demo_ind],
ACTION_TO_ID['place'] : self.action_log[demo_ind + 1],
'grasp_image_ind': grasp_image_ind, 'place_image_ind': place_image_ind}
# for last progress val, grasp_image_ind and place_image_ind are both the same
image_ind = int(self.image_names[-1].split('.')[0])
self.action_dict[(self.num_actions // 2) + 1] = {'grasp_image_ind': image_ind,
'place_image_ind': image_ind}
def get_heightmaps(self, action_str, stack_height, use_hist=False, history_len=3):
rgb_filename = os.path.join(self.rgb_dir,
'%06d.%s.%d.color.png' % (stack_height, action_str, self.demo_num))
depth_filename = os.path.join(self.depth_dir,
'%06d.%s.%d.depth.png' % (stack_height, action_str, self.demo_num))
# read rgb and depth heightmap
rgb_heightmap = cv2.cvtColor(cv2.imread(rgb_filename), cv2.COLOR_BGR2RGB)
depth_heightmap = cv2.imread(depth_filename, -1).astype(np.float32)/100000
# if using history, need to modify depth heightmap
if use_hist:
depth_heightmap_history = [depth_heightmap]
image_ind = self.image_names.index(rgb_filename.split('/')[-1])
hist_ind = image_ind
# iterate through last history_len frames and add to list
for i in range(history_len - 1):
# calculate previous index
hist_ind = max(0, hist_ind - 1)
# load heightmap and add to list
heightmap_path = os.path.join(self.depth_dir, self.image_names[image_ind].replace('color', 'depth'))
hist_depth = cv2.imread(heightmap_path, -1).astype(np.float32)/100000
depth_heightmap_history.append(hist_depth)
return rgb_heightmap, np.stack(depth_heightmap_history, axis=-1)
return rgb_heightmap, np.stack([depth_heightmap] * 3, axis=-1)
def get_action(self, workspace_limits, primitive_action, stack_height, stack_trainer=None,
row_trainer=None, unstack_trainer=None, vertical_square_trainer=None, use_hist=False,
demo_mask=True, cycle_consistency=False):
# ensure one of stack trainer or row trainer is provided
if stack_trainer is None and row_trainer is None and unstack_trainer is None and vertical_square_trainer is None:
raise ValueError("Must provide at least one trainer")
# TODO(adit98) make the call to action_dict in get_heightmaps instead of here! Bad code...
if primitive_action == 'grasp':
color_heightmap, valid_depth_heightmap = self.get_heightmaps(primitive_action,
self.action_dict[stack_height]['grasp_image_ind'], use_hist=use_hist)
elif primitive_action == 'place':
color_heightmap, valid_depth_heightmap = self.get_heightmaps(primitive_action,
self.action_dict[stack_height]['place_image_ind'], use_hist=use_hist)
# get stack features if stack_trainer is provided
# TODO(adit98) can add specific rotation to these forward calls for speedup
if stack_trainer is not None:
# to get vector of 64 vals, run trainer.forward with get_action_feat
stack_push, stack_grasp, stack_place = stack_trainer.forward(color_heightmap,
valid_depth_heightmap, is_volatile=True, keep_action_feat=True,
demo_mask=demo_mask)[:3]
# fill all masked arrays (convert to regular np arrays)
stack_push, stack_grasp, stack_place = stack_push.filled(0.0), \
stack_grasp.filled(0.0), stack_place.filled(0.0)
# get row features if row_trainer is provided
if row_trainer is not None:
# to get vector of 64 vals, run trainer.forward with get_action_feat
row_push, row_grasp, row_place = row_trainer.forward(color_heightmap,
valid_depth_heightmap, is_volatile=True, keep_action_feat=True,
demo_mask=demo_mask)[:3]
# fill all masked arrays (convert to regular np arrays)
row_push, row_grasp, row_place = row_push.filled(0.0), \
row_grasp.filled(0.0), row_place.filled(0.0)
# get unstack features if unstack_trainer is provided
if unstack_trainer is not None:
# to get vector of 64 vals, run trainer.forward with get_action_feat
unstack_push, unstack_grasp, unstack_place = unstack_trainer.forward(color_heightmap,
valid_depth_heightmap, is_volatile=True, keep_action_feat=True,
demo_mask=demo_mask)[:3]
# fill all masked arrays (convert to regular np arrays)
unstack_push, unstack_grasp, unstack_place = unstack_push.filled(0.0), \
unstack_grasp.filled(0.0), unstack_place.filled(0.0)
# get vertical_square features if vertical_square_trainer is provided
if vertical_square_trainer is not None:
# to get vector of 64 vals, run trainer.forward with get_action_feat
vertical_square_push, vertical_square_grasp, vertical_square_place = vertical_square_trainer.forward(color_heightmap,
valid_depth_heightmap, is_volatile=True, keep_action_feat=True,
demo_mask=demo_mask)[:3]
# fill all masked arrays (convert to regular np arrays)
vertical_square_push, vertical_square_grasp, vertical_square_place = vertical_square_push.filled(0.0), \
vertical_square_grasp.filled(0.0), vertical_square_place.filled(0.0)
# get demo action index vector
action_vec = self.action_dict[stack_height][ACTION_TO_ID[primitive_action]]
# convert rotation angle to index
best_rot_ind = np.around((np.rad2deg(action_vec[-2]) % 360) * 16 / 360).astype(int)
# convert robot coordinates to pixel
workspace_pixel_offset = workspace_limits[:2, 0] * -1 * 1000
best_action_xy = ((workspace_pixel_offset + 1000 * action_vec[:2]) / 2).astype(int)
# initialize best actions for stacking and row making
best_action_stack, best_action_row, best_action_unstack, best_action_vertical_square = None, None, None, None
# initialize embedding arrays for each policy (for selected primitive_action)
stack_feat, row_feat, unstack_feat, vertical_square_feat = None, None, None, None
# index predictions to obtain best action
if primitive_action == 'grasp':
# NOTE that we swap the order that the best_action_xy coordinates are passed in since
# the NN output expects (theta, :, y, x)
if stack_trainer is not None:
best_action_stack = stack_grasp[best_rot_ind, :, best_action_xy[1],
best_action_xy[0]]
stack_feat = stack_grasp
if row_trainer is not None:
best_action_row = row_grasp[best_rot_ind, :, best_action_xy[1],
best_action_xy[0]]
row_feat = row_grasp
if unstack_trainer is not None:
best_action_unstack = unstack_grasp[best_rot_ind, :, best_action_xy[1],
best_action_xy[0]]
if vertical_square_trainer is not None:
best_action_vertical_square = vertical_square_grasp[best_rot_ind, :,
best_action_xy[1], best_action_xy[0]]
vertical_square_feat = vertical_square_grasp
elif primitive_action == 'place':
if stack_trainer is not None:
best_action_stack = stack_place[best_rot_ind, :, best_action_xy[1],
best_action_xy[0]]
stack_feat = stack_place
if row_trainer is not None:
best_action_row = row_place[best_rot_ind, :, best_action_xy[1],
best_action_xy[0]]
row_feat = row_place
if unstack_trainer is not None:
best_action_unstack = unstack_place[best_rot_ind, :, best_action_xy[1],
best_action_xy[0]]
unstack_feat = unstack_place
if vertical_square_trainer is not None:
best_action_vertical_square = vertical_square_place[best_rot_ind, :,
best_action_xy[1], best_action_xy[0]]
vertical_square_feat = vertical_square_place
# if we aren't using cycle consistency, return best action's embedding
if not cycle_consistency:
# return best action for each model, primitive_action
return best_action_row, best_action_stack, best_action_unstack, best_action_vertical_square, ACTION_TO_ID[primitive_action], None
# otherwise, return the entire 16x224x224 embedding space (only for selected primitive action)
else:
action_ind = (best_rot_ind, best_action_xy[1], best_action_xy[0])
return row_feat, stack_feat, unstack_feat, vertical_square_feat, ACTION_TO_ID[primitive_action], action_ind
def load_all_demos(demo_path, check_z_height, task_type):
"""
Function to load all demonstrations in a given path and return a list of demo objects.
Argument:
demo_path: Path to folder with demonstrations
"""
demos = []
demo_ind = 0
while True:
try:
demos.append(Demonstration(path=demo_path, demo_num=demo_ind,
check_z_height=check_z_height, task_type=task_type))
except OSError:
# demo does not exist, we loaded all the demos in the directory
break
# increment demo_ind
demo_ind += 1
return demos
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。