代码拉取完成,页面将自动刷新
import numpy as np
import json
import pathlib
import torch
import cv2
import re
import copy
import pdb
from matplotlib import pyplot as plt
import matplotlib.patches as patches
from IPython.display import clear_output
from tqdm import tqdm
from skimage.util import random_noise
import utils
try:
import pygame
except ImportError as e:
print(e)
print('pygame not available, some features may be disabled, try pip install pygame --user -upgrade')
pygame = None
def check_success(data, idx):
return data[idx][0] == 1
class Pair:
def __init__(self, prev_image, prev_location, next_image, next_location, resolution = 224, w = 40, is_row = True,
prev_image_for_inference = None,
next_image_for_inference = None,
long_command = None):
self.prev_image = prev_image
self.prev_location = prev_location
self.next_image = next_image
self.next_location = next_location
self.w = w
self.source_code = None
self.source_num = None
self.source_location = None
self.target_code = None
self.target_num = None
self.target_location = None
self.relation_code = None
self.resolution = resolution
self.prev_state_image = None
self.next_state_image = None
self.prev_image_for_inference = prev_image_for_inference
self.next_image_for_inference = next_image_for_inference
self.long_command = long_command
self.json_data = None
self.is_row = is_row
def show(self):
fig,ax = plt.subplots(1)
ax.imshow(self.prev_image_for_inference[:,:,0:3])
prev_location = self.prev_location - int(self.w/2)
next_location = self.next_location - int(self.w/2)
rect = patches.Rectangle(prev_location, self.w, self.w ,linewidth=3,edgecolor='w',facecolor='none')
# ax.add_patch(rect)
plt.show()
fig,ax = plt.subplots(1)
ax.imshow(self.next_image_for_inference[:,:,0:3])
rect = patches.Rectangle(next_location, self.w, self.w,linewidth=3,edgecolor='w',facecolor='none')
# ax.add_patch(rect)
plt.show()
def resize(self):
prev_image, prev_depth = self.prev_image[:,:,0:3], self.prev_image[:,:,3:]
prev_image = cv2.resize(prev_image, (self.resolution,self.resolution), interpolation = cv2.INTER_AREA)
prev_depth = cv2.resize(prev_depth, (self.resolution,self.resolution), interpolation = cv2.INTER_AREA)
self.prev_image = np.concatenate([prev_image, prev_depth], axis=-1)
if self.next_image is not None:
next_image, next_depth = self.next_image[:,:,0:3], self.next_image[:,:,3:]
next_image = cv2.resize(next_image, (self.resolution,self.resolution), interpolation = cv2.INTER_AREA)
next_depth = cv2.resize(next_depth, (self.resolution,self.resolution), interpolation = cv2.INTER_AREA)
self.next_image = np.concatenate([next_image, next_depth], axis=-1)
self.ratio = self.resolution / 224
# don't double-resize
if self.prev_state_image is not None and self.prev_state_image.shape[0] != self.resolution:
self.prev_state_image = (np.tile(self.prev_state_image, (1,1,3))/4) * 255
self.prev_state_image = cv2.resize(self.prev_state_image, (self.resolution,self.resolution), interpolation = cv2.INTER_NEAREST)
self.prev_state_image = (self.prev_state_image / 255) * 4
self.prev_state_image = self.prev_state_image[:,:,0].astype(int)
assert(np.sum(self.prev_state_image) > 0)
if self.prev_location is not None:
self.prev_location = self.prev_location.astype(float).copy() * self.ratio
self.prev_location = self.prev_location.astype(int)
if self.next_location is not None:
self.next_location = self.next_location.astype(float).copy() * self.ratio
self.next_location = self.next_location.astype(int)
# normalize location and width
self.w *= self.ratio
self.w = int(self.w)
def get_mask(self, location):
w, h, __ = self.prev_image.shape
mask = np.zeros((1, w, h))
start = location - int(self.w/2)
start = start.astype(int)
mask[:, start[1]: start[1] + self.w, start[0]: start[0] + self.w] = 1
return mask
@classmethod
def from_idxs(cls, grasp_idx, place_idx, data, image_home, is_row = True, w = 40, long_command = None ):
prev_location = data[grasp_idx][2:][::-1]
next_location = data[place_idx][2:][::-1]
grasp_prefix = str(1000000 + grasp_idx)[1:]
place_prefix = str(1000000 + place_idx)[1:]
depth_home = image_home.parent.joinpath("depth-heightmaps")
grasp_color_path = str(image_home.joinpath(f"{grasp_prefix}.0.color.png"))
place_color_path = str(image_home.joinpath(f"{place_prefix}.2.color.png"))
grasp_depth_path = str(depth_home.joinpath(f"{grasp_prefix}.0.depth.png"))
place_depth_path = str(depth_home.joinpath(f"{place_prefix}.2.depth.png"))
prev_image = cv2.imread(grasp_color_path)
prev_image = cv2.cvtColor(prev_image, cv2.COLOR_BGR2RGB)
prev_image_for_inference = prev_image.copy()
prev_depth = cv2.imread(grasp_depth_path, -1)
prev_depth = prev_depth.astype(np.float32)/100000
prev_depth = np.stack([prev_depth] * 3, axis=-1)
#prev_depth = cv2.cvtColor(prev_depth, cv2.COLOR_BGR2RGB)
next_image = cv2.imread(place_color_path)
next_image = cv2.cvtColor(next_image, cv2.COLOR_BGR2RGB)
next_image_for_inference = next_image.copy()
next_depth = cv2.imread(place_depth_path, -1)
next_depth = next_depth.astype(np.float32)/100000
next_depth = np.stack([next_depth] * 3, axis=-1)
#next_depth = cv2.cvtColor(next_depth, cv2.COLOR_BGR2RGB)
prev_image = np.concatenate([prev_image, prev_depth], axis=-1)
next_image = np.concatenate([next_image, next_depth], axis=-1)
return cls(prev_image, prev_location, next_image, next_location, is_row = is_row, w = w,
prev_image_for_inference = prev_image_for_inference,
next_image_for_inference = next_image_for_inference,
long_command = long_command)
@classmethod
def from_sim_idxs(cls, grasp_idx, place_idx, data, image_home, json_home, is_row=True, w = 40, filter_colors = False, long_command = None):
pair = Pair.from_idxs(grasp_idx, place_idx, data, image_home, is_row = is_row, w = w, long_command = long_command)
# annotate based on sim data
grasp_json_path = json_home.joinpath(f"object_positions_and_orientations_{grasp_idx}_0.json")
place_json_path = json_home.joinpath(f"object_positions_and_orientations_{place_idx}_2.json")
json_data = Pair.read_json(grasp_json_path)
src_color, tgt_color = pair.combine_json_data(json_data, filter_colors = filter_colors)
if src_color is None or tgt_color is None:
return None
pair.json_data = json_data
return pair
@classmethod
def from_main_idxs(cls, prev_image, prev_heightmap, prev_json, stack_sequence, is_row = True):
# TODO(elias) infer which block to move from interpolation here
prev_image = np.concatenate([prev_image, prev_heightmap], axis=-1)
pair = cls(prev_image, None, None, None, is_row = is_row)
json_data = Pair.read_json(prev_json)
pair.json_data = json_data
src_color, tgt_color = pair.infer_from_stacksequence(stack_sequence)
return pair
@classmethod
def from_nonsim_main_idxs(cls, prev_image, prev_heightmap, is_row = True):
prev_image = np.concatenate([prev_image, prev_heightmap], axis=-1)
pair = cls(prev_image, None, None, None, is_row = is_row)
src_color, tgt_color = pair.annotate_source_target(is_row)
return pair
def annotate_one_color(self):
print(f"ANNOTATION INSTRUCTIONS: color mapping: \n" +
"\t1/r: red\n\t2/g: green\n\t3/b: blue\n\t4/y: yellow")
flag = 0
if pygame is None:
import pygame
pygame.init()
screen = pygame.display.set_mode((700, 500))
pygame.display.update()
while flag == 0:
events = pygame.event.get()
for event in events:
if event.type == pygame.QUIT:
pygame.quit()
if event.type == pygame.KEYDOWN:
if event.key in [pygame.K_1, pygame.K_r]:
print("label set to red")
flag = 1
pygame.quit()
return 1, "red"
elif event.key in [pygame.K_2, pygame.K_g]:
print("label set to green")
flag = 1
pygame.quit()
return 3, "green"
elif event.key in [pygame.K_3, pygame.K_b]:
print("label set to blue")
flag = 1
pygame.quit()
return 2, "blue"
elif event.key in [pygame.K_4, pygame.K_y]:
print("label set to yellow")
flag = 1
pygame.quit()
return 4, "yellow"
def annotate_source_target(self, is_row, use_pygame=False):
if use_pygame:
source_num, source_color = self.annotate_one_color()
target_num, target_color = self.annotate_one_color()
self.source_code = source_color
self.source_num = source_num
self.target_code = target_color
self.target_num = target_num
return source_color, target_color
else:
color_names, color_nums = utils.get_color_order_from_human(2, input_description='input the color to GRASP then the color to PLACE relative to')
self.source_code = color_names[0]
self.source_num = color_nums[0]
self.target_code = color_names[1]
self.target_num = color_nums[1]
return color_names[0], color_names[1]
def infer_from_stacksequence(self, stack_sequence):
src_idx = stack_sequence.object_color_index
src_color_idx = stack_sequence.object_color_sequence[src_idx]
src_color = stack_sequence.color_names[src_color_idx]
try:
assert(src_idx >= 0)
tgt_idx = src_idx - 1
tgt_color_idx = stack_sequence.object_color_sequence[tgt_idx]
except (AssertionError, IndexError) as e:
raise ValueError(f"StackSequence error: object asked for doesn't exist")
tgt_color = stack_sequence.color_names[tgt_color_idx]
self.source_code = src_color
self.target_code = tgt_color
return src_color, tgt_color
@staticmethod
def read_json(json_path):
if type(json_path) == dict:
data = json_path
else:
with open(json_path) as f1:
data = json.load(f1)
num_blocks = data['num_obj']
colors = data['color_names'][0:num_blocks]
coords = data['positions']
assert(len(coords) == num_blocks)
assert(len(coords[0]) == 3)
to_ret = {}
for color, coord in zip(colors, coords):
# normalize location to resolution
coord = np.array(coord)
to_ret[color] = coord
return to_ret
def get_moved_block(self, prev_coords, next_coords):
diff = {k: prev_coords[k][0:2] - next_coords[k][0:2] for k in prev_coords.keys()}
diff = [(k, np.sum(x)) for k, x in diff.items()]
# get block with greatest diff in location
return list(sorted(diff, key = lambda x: x[1]))[-1]
def make_image(self, json_data):
state = np.zeros((self.resolution, self.resolution, 1))
def convert_to_loc(state):
offset = [0.15, 0.0, 0.0]
grid_dim = 14
side_len = 0.035
x_offset = 0.58
grid_len = grid_dim*side_len
state[0] += x_offset
for i in range(len(state)):
state[i] = (state[i] * 2) / grid_len - offset[i]
state = (state + 1)/2 * self.resolution
return state.astype(int)
color_to_idx = {"red":1, "blue": 2, "green": 3, "yellow": 4, "brown": 5, "orange": 6, "gray": 7, "purple": 8, "cyan": 9, "pink": 10}
for color, location in json_data.items():
idx = color_to_idx[color]
loc = convert_to_loc(location)
block_width = 15
for i in range(loc[0]-block_width, loc[0] + block_width):
for j in range(loc[1] - block_width, loc[1] + block_width):
try:
state[j, i, :] = idx
except IndexError:
continue
return state
@staticmethod
def euclidean_distance(a, b):
if type(a) == tuple:
a = np.array(a)
if type(b) == tuple:
b = np.array(b)
return np.linalg.norm(a-b)
def get_most_common_color(self, color_swatch, same_thresh = 1):
count_dict = {}
for i in range(0, color_swatch.shape[0]):
for j in range(0, color_swatch.shape[1]):
color = color_swatch[i,j,:]
already_in = False
for k in count_dict.keys():
if Pair.euclidean_distance(k,color) < same_thresh:
count_dict[k] += 1
already_in = True
if not already_in:
color = tuple([x for x in color])
count_dict[color] = 1
count_dict_items = count_dict.items()
most_freq = sorted(count_dict_items, key = lambda x:x[1])[-1][0]
return most_freq
def filter_color_against_keycolors(self, color_name, pred_loc, image):
# check whether color names and actual color match up, filter out examples where they don't
# prototypical colors:
color_name_dict = { (217,74,76) : "red",
(76,137,68) :"green",
(67,103,142) :"blue",
(202,171,62) :"yellow",
(206,121,37) : "orange",
(158,148,146) :"gray",
(131,100,81) :"brown",
(148,104,137) :"purple",
(45,45,45): "background",
(0,0,0): "shadow"}
# get most common color in color swatch
image = image[:,:,0:3]
pred_loc = pred_loc.astype(int)
pred_color_swatch = image[pred_loc[1]: pred_loc[1] + self.w, pred_loc[0]: pred_loc[0] + self.w, :]
pred_color = self.get_most_common_color(pred_color_swatch)
distances = [(name, Pair.euclidean_distance(k,pred_color)) for k,name in color_name_dict.items()]
pred_color_name = sorted(distances, key = lambda x:x[1])[0]
return pred_color_name[0] == color_name, pred_color_name[0]
def combine_json_data(self, json_data, next_to=True, filter_left=False, filter_colors=True):
# first pass: all prompts say "next to" and reference the closest block to the left of the target location
# if no such block exists, skip for now
def euclid_dist(p1, p2):
total = 0
for i in range(len(p1)):
total += (p1[i] - p2[i])**2
return np.sqrt(total)
# find block closest to grasp index
# min_grasp_color = self.get_moved_block(prev_json_data, next_json_data)
def convert_loc(loc):
loc = ((loc / 224) * 2) - 1
offset = [0.15, 0.0, 0.0]
grid_dim = 14
side_len = 0.035
x_offset = 0.58
grid_len = grid_dim*side_len
for i in range(len(loc)):
loc[i] = (loc[i] + offset[i]) * grid_len/2
loc[0] -= x_offset
return loc
def convert_to_loc(state):
offset = [0.15, 0.0, 0.0]
grid_dim = 14
side_len = 0.035
x_offset = 0.58
grid_len = grid_dim*side_len
state[0] += x_offset
for i in range(len(state)):
state[i] = (state[i] * 2) / grid_len - offset[i]
state = (state + 1)/2 * 224
return state.astype(int)
assert(np.sum(convert_loc(convert_to_loc(np.array([-0.43000549, 0.08394134, 0.02593102]))) - np.array([-0.43000549, 0.08394134, 0.02593102])) < 0.01)
json_data_new = copy.deepcopy(json_data)
self.prev_state_image = self.make_image(json_data)
#prev_loc = convert_loc(self.prev_location)
#next_loc = convert_loc(self.next_location)
if self.is_row:
json_data_new = {k:convert_to_loc(v)[0:2] for k, v in json_data_new.items() }
else:
json_data_new = {k:convert_to_loc(v) for k, v in json_data_new.items() }
grasp_dists = [(x[0], euclid_dist(self.prev_location, x[1])) for x in json_data_new.items()]
min_grasp_color = list(sorted(grasp_dists, key = lambda x:x[1]))[0][0]
remaining_blocks = [x for x in json_data_new.items() if x[0] != min_grasp_color]
remaining_blocks_before = [x for x in remaining_blocks]
if not self.is_row:
# if we're building a stack, restrict to the highest blocks
thresh = 10
heights = [x[1][-1] for x in remaining_blocks]
max_height = max(heights)
#place_height = self.next_location[-1]
# soft match blocks within a threshold of 10 pixels of the place location
remaining_blocks = [x for x in remaining_blocks if np.abs(x[1][-1] - max_height) < thresh ]
# find block closest to place index
place_dists = [(x[0], euclid_dist(self.next_location, x[1])) for x in remaining_blocks]
sorted_place_dists = sorted(place_dists, key = lambda x:x[1])
match_thresh = 25
if not self.is_row:
# if the height restriction was too restrictive, back off to flat match
if (len(sorted_place_dists) == 0 or sorted_place_dists[0][1] > match_thresh):
print(f"BACKING OFF to x-z only")
remaining_blocks = remaining_blocks_before
place_dists = [(x[0], euclid_dist(self.next_location, x[1])) for x in remaining_blocks]
sorted_place_dists = sorted(place_dists, key = lambda x:x[1])
min_place_color = list(sorted_place_dists)[0][0]
# get relation between place location and place block
self.source_code = min_grasp_color
self.target_code = min_place_color
self.relation_code = "next_to"
if filter_colors:
# use previous image for both so it's not covered up by placed block
place_color_correct, pred_place_color = self.filter_color_against_keycolors(min_place_color, self.next_location, self.prev_image_for_inference)
grasp_color_correct, pred_grasp_color = self.filter_color_against_keycolors(min_grasp_color, self.prev_location, self.prev_image_for_inference)
if not place_color_correct or not grasp_color_correct:
#print(f"place color: {min_place_color} vs inferred {pred_place_color}, grasp color: {min_grasp_color} vs inferred {pred_grasp_color}")
#self.show()
#pdb.set_trace()
return None, None
return min_grasp_color, min_place_color
def clean(self):
# re-order codes so that "top", "bottom", come bfore "left" "right"
if self.source_location == "none":
self.source_location = "n"
if self.target_location == "none":
self.target_location = "n"
if self.source_location == "as":
self.source_location = "sa"
if self.target_location == "as":
self.target_location = "sa"
if self.source_location == "ds":
self.source_location = "sd"
if self.target_location == "ds":
self.target_location = "sd"
if self.source_location == "aw":
self.source_location = "wa"
if self.target_location == "aw":
self.target_location = "wa"
if self.source_location == "dw":
self.source_location = "wd"
if self.target_location == "dw":
self.target_location = "wd"
if self.relation_code == "ds":
self.relation_code = "sd"
if self.relation_code == "wa":
self.relation_code = "aw"
if self.relation_code == "dw":
self.relation_code = "wd"
if self.relation_code == "sa":
self.relation_code = "as"
def generate(self):
self.clean()
try:
if self.long_command is None:
return self.generate_normal()
else:
return self.generate_long_command()
except AttributeError:
return self.generate_normal()
def generate_normal(self):
location_lookup_dict = {"w": "top", "d": "right", "a": "left", "s": "bottom", "n":""}
location_lookup_fxn = lambda x: " ".join([location_lookup_dict[y] for y in list(x)])
relation_lookup_dict = {"on": "on top of",
"next_to": "next to",
"w": "over",
"s": "under",
"a": "to the left of",
"d": "to the right of",
"aw": "up and to the left of",
"as": "down and to the left of",
"wd": "up and to the right of",
"sd": "down and to the right of"}
#stack_template = "stack the {source_location} {source_color} block {relation} the {target_location} {target_color} block"
stack_template = "stack the {source_color} block {relation} the {target_color} block"
row_template = "move the {source_color} block {relation} the {target_color} block"
# is stacking task
try:
if self.is_row:
return row_template.format(source_color = self.source_code,
target_color = self.target_code,
relation = "next to")
# relation = relation_lookup_dict[self.relation_code])
else:
return stack_template.format(source_color = self.source_code,
target_color = self.target_code,
relation = "on")
except KeyError:
return "bad"
def generate_long_command(self):
stack_template = "make a stack of the {color0}, {color1}, {color2}, and {color3} blocks. {source_color}"
row_template = "make a row of the {color0}, {color1}, {color2}, and {color3} blocks. {source_color}"
if self.is_row:
return row_template.format(color0 = self.long_command[0],
color1 = self.long_command[1],
color2 = self.long_command[2],
color3 = self.long_command[3],
source_color = self.source_code)
else:
return stack_template.format(color0 = self.long_command[0],
color1 = self.long_command[1],
color2 = self.long_command[2],
color3 = self.long_command[3],
source_color = self.source_color)
def rotate_pair(pair, deg):
pair.clean()
assert(deg in [1,2,3])
new_pair = copy.deepcopy(pair)
def rotate_image(img):
for i in range(deg):
img = cv2.rotate(img, cv2.cv2.ROTATE_90_CLOCKWISE)
return img
def rotate_coords(coords):
# put back into unit square
coords = ((coords/new_pair.resolution) * 2)-1
x, y = coords
x, y = -y, x
coords = np.array([x,y])
coords = (coords + 1)/2 * new_pair.resolution
return coords
new_pair.prev_image = rotate_image(new_pair.prev_image)
new_pair.next_image = rotate_image(new_pair.next_image)
new_pair.prev_location = rotate_coords(new_pair.prev_location)
new_pair.next_location = rotate_coords(new_pair.next_location)
return new_pair
def gaussian_augment(pair, params):
mean, var = params
new_pair = copy.deepcopy(pair)
new_pair.prev_image = random_noise(new_pair.prev_image, mode='gaussian', mean=mean, var=var, clip=True)
new_pair.next_image = random_noise(new_pair.next_image, mode='gaussian', mean=mean, var=var, clip=True)
return new_pair
def flip_pair(pair, axis):
pair.clean()
flip_lookup = {1: {"w": "w", "a": "d", "s": "s", "d": "a"},
2: {"w": "d", "a": "s", "s": "a", "d": "w"},
3: {"w": "s", "a": "a", "s": "w", "d": "d"},
4: {"w": "a", "a": "w", "s": "d", "d": "s"}}
def replace(code):
code = list(code)
if code[0] == "n":
return "".join(code)
try:
code = [flip_lookup[axis][x] for x in code]
except:
pdb.set_trace()
return "".join(code)
new_pair = copy.deepcopy(pair)
if new_pair.source_location is not None and new_pair.source_location != "none":
new_pair.source_location = replace(new_pair.source_location)
if new_pair.target_location is not None and new_pair.target_location != "none":
new_pair.target_location = replace(new_pair.target_location)
if new_pair.relation_code != "on":
new_pair.relation_code = replace(new_pair.relation_code)
def flip_image(img):
if axis == 1:
# vertical flip
flipped_img = cv2.flip(img, 1)
elif axis == 3:
# horizontal flip
flipped_img = cv2.flip(img, 0)
elif axis == 2:
# along backward diag
flipped_img = np.transpose(np.rot90(img,2, axes=(0,1)), axes = (1,0,2))
elif axis == 4:
# along regular diag
flipped_img = np.transpose(img, axes = (1,0,2))
else:
raise AssertionError("Axis must be one of [1,2,3,4]")
return flipped_img
def flip_coords(coords):
max = 224
if axis == 1:
# x coord flips
coords[0] = 224 - coords[0]
elif axis == 2:
# transpose and rotate
coords[0], coords[1] = coords[1], coords[0]
coords[0] = 224 - coords[0]
coords[1] = 224 - coords[1]
elif axis == 3:
# y coord flips
coords[1] = 224 - coords[1]
elif axis == 4:
# transpose
coords[0], coords[1] = coords[1], coords[0]
else:
pass
return coords
new_pair.prev_image = flip_image(new_pair.prev_image)
new_pair.next_image = flip_image(new_pair.next_image)
new_pair.prev_location = flip_coords(new_pair.prev_location)
new_pair.next_location = flip_coords(new_pair.next_location)
if hasattr(new_pair, "prev_state_image"):
new_pair.prev_state_image = flip_image(new_pair.prev_state_image).reshape(224, 224, 1)
return new_pair
def get_pairs(data_home, resolution = 224, w = 40, is_sim = False, is_row = True, filter_colors = False, long_command = False):
# to get whole string:
# - use clearance to split into separate trials
# - use existing code to get all grasp/place success pairs from a trial
# - keep current code to get correct current action, but add in whole trial history to generate command
image_home = data_home.joinpath("data/color-heightmaps")
if is_sim:
json_home = data_home.joinpath("data/variables")
executed_action_path = data_home.joinpath("transitions/executed-action.log.txt")
place_successes_path = data_home.joinpath("transitions/place-success.log.txt")
grasp_successes_path = data_home.joinpath("transitions/grasp-success.log.txt")
if long_command:
clearance_path = data_home.joinpath("transitions/clearance.log.txt")
stack_height_path = data_home.joinpath("transitions/stack-height.log.txt")
kwargs = {'delimiter': ' ', 'ndmin': 2}
executed_action_data = np.loadtxt(executed_action_path, **kwargs)
place_succ_data = np.loadtxt(place_successes_path, **kwargs)
grasp_succ_data = np.loadtxt(grasp_successes_path, **kwargs)
if long_command:
# TODO elias: use json data to get final block order
clearance_data = np.loadtxt(clearance_path, **kwargs).astype(int)
stack_height_data = np.loadtxt(stack_height_path, **kwargs).astype(int)
color_sequences = {}
trial_start = 0
for i, trial_end in enumerate(clearance_data):
trial_end = trial_end[0] - 1
stack_height = stack_height_data[trial_end][0]
if stack_height < 4:
continue
place_json_path = json_home.joinpath(f"object_positions_and_orientations_{trial_end}_2.json")
json_data = Pair.read_json(place_json_path)
# first get all at lowest position
# filter out weird ones with super negative y
json_data = {k:v for k,v in json_data.items() if v[2] >= 0}
lowest_y_coord = min([x[2] for x in json_data.values()])
lowest_colors = [x for x in json_data.items() if abs(x[1][2] - lowest_y_coord) < 0.001]
lowest_color_names = [x[0] for x in lowest_colors]
higher_colors = [x for x in json_data.items() if x[0] not in lowest_color_names]
stack_candidates = {}
for lcolor, lcoord in lowest_colors:
stack_candidates[lcolor] = []
lcoord_xy = lcoord[0:2]
for hcolor, hcoord in higher_colors:
hcoord_xy = hcoord[0:2]
lh_dist = Pair.euclidean_distance(lcoord_xy, hcoord_xy)
if lh_dist < 0.04:
stack_candidates[lcolor].append((hcolor, hcoord))
try:
final_candidate = [x for x in stack_candidates.items() if len(x[1]) == 3][0]
except IndexError:
print(json_data)
print(stack_candidates)
raise IndexError(f"There should be 4 block candidates!")
colors_sorted = sorted(final_candidate[1], key = lambda x: x[1][2])
colors_sorted = [x[0] for x in colors_sorted]
colors_sorted = [final_candidate[0]] + colors_sorted
for i in range(trial_start, trial_end + 1):
color_sequences[i] = colors_sorted
trial_start = trial_end + 1
prev_act = None
prev_grasp_idx = None
pick_place_pairs = []
skipped_by_filter, skipped_for_push = 0, 0
successes = 0
num_grasps = 0
grasp_and_success = 0
for demo_idx in range(len(executed_action_data)):
ex_act = executed_action_data[demo_idx]
grasp = False
if int(ex_act[0]) == 0:
skipped_push += 1
continue
elif int(ex_act[0]) == 1:
data = grasp_succ_data
grasp = True
num_grasps += 1
elif int(ex_act[0]) == 2:
data = place_succ_data
else:
raise AssertionError(f"action must be of on [0, 1, 2]")
try:
was_success = check_success(data, demo_idx)
if was_success:
successes += 1
except IndexError:
print(f"hit end!")
break
if prev_act == "grasp":
# next action must be place if prev was successful grasp
try:
assert(not grasp)
except AssertionError:
print(f"double grasp at {demo_idx}")
if prev_act == "place":
try:
assert(grasp)
except AssertionError:
print(f"double place at {demo_idx}")
# sanity checks
if grasp and was_success:
prev_act = "grasp"
prev_grasp_idx = demo_idx
if not grasp and was_success:
grasp_and_success += 1
prev_act = "place"
# now you can create a pair with the previous action's grasp and current place
if is_sim:
if long_command:
try:
color_sequence = color_sequences[demo_idx]
except KeyError:
print(max(color_sequences.keys()))
print(demo_idx)
pdb.set_trace()
pair = Pair.from_sim_idxs(prev_grasp_idx, demo_idx, executed_action_data, image_home, json_home, is_row = is_row, w = w, filter_colors = filter_colors, long_command = color_sequence)
else:
pair = Pair.from_sim_idxs(prev_grasp_idx, demo_idx, executed_action_data, image_home, json_home, is_row = is_row, w = w, filter_colors = filter_colors)
if pair is None:
skipped_by_filter += 1
prev_grasp_idx = None
continue
else:
pair = Pair.from_idxs(prev_grasp_idx, demo_idx, executed_action_data, image_home)
pick_place_pairs.append(pair)
prev_grasp_idx = None
print(f"grasp and success {grasp_and_success}")
print(f"total successes {successes}")
print(f"total grasps {num_grasps}")
print(f"skipped for push {skipped_for_push}")
print(f"skipped {skipped_by_filter} of {len(executed_action_data)}: {skipped_by_filter * 100 / len(executed_action_data):.2f}%")
return pick_place_pairs
def get_input(prompt, valid_gex):
var = None
while var is None:
inp = input(prompt)
if valid_gex.match(inp) is not None:
var = inp
else:
continue
return var
def annotate_pairs(pairs,
is_stack = False):
pairs_with_actions = []
color_gex = re.compile("(bad)|[rbyg]")
relation_gex = re.compile("[wasd]{1,2}")
location_gex = re.compile("[wasd]{1,2}|(none)")
for p in tqdm(pairs):
p.show()
source_color = get_input("Source color: ", color_gex)
if is_stack:
source_location = get_input("Source location: ", location_gex)
target_color = get_input("Target color: ", color_gex)
if is_stack:
target_location = get_input("Target location: ", location_gex)
if not is_stack:
# if row-making, get position
relation = get_input("Relation: ", relation_gex)
target_location, source_location = None, None
else:
# stacking only has one
relation = 'on'
p.source_code = source_color
p.target_code = target_color
p.relation_code = relation
p.source_location = source_location
p.target_location = target_location
p.clean()
pairs_with_actions.append(p)
clear_output(wait=True)
return pairs_with_actions
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。