代码拉取完成,页面将自动刷新
同步操作将从 衣沾不足惜/SDXL-Turbo 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import gradio as gr
import torch
import modin.pandas as pd
import numpy as np
from diffusers import DiffusionPipeline
import subprocess
device = "cuda" if torch.cuda.is_available() else "cpu"
ret, out = subprocess.getstatusoutput('cd /home && git -c lfs.url="http://lfs-internal.gitee.com/hf-models/sdxl-turbo.git/info/lfs" clone https://oauth2:ba5873331afef8656c65ea8a9b3ab929@gitee.com/hf-models/sdxl-turbo.git')
print("ret:", ret)
print("out:", out)
if torch.cuda.is_available():
print("cuda")
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
pipe = DiffusionPipeline.from_pretrained("/home/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
torch.cuda.empty_cache()
else:
print("cpu")
pipe = DiffusionPipeline.from_pretrained("/home/sdxl-turbo", use_safetensors=True)
pipe = pipe.to(device)
def genie (prompt, steps, seed):
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
int_image = pipe(prompt=prompt, generator=generator, num_inference_steps=steps, guidance_scale=0.0).images[0]
return int_image
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
gr.Slider(1, maximum=5, value=2, step=1, label='Number of Iterations'),
gr.Slider(minimum=0, step=1, maximum=999999999999999999, randomize=True),
],
outputs='image',
title="Stable Diffusion Turbo",
description="SDXL Turbo. <br><br><b>WARNING: This model is capable of producing NSFW (Softcore) images.</b>",
article = "Hosted on gitee-ai").launch(debug=True, max_threads=80)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。