1 Star 0 Fork 1

impecunious/object-detection-masked-rcnn

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
visualize_cv2.py 4.22 KB
一键复制 编辑 原始数据 按行查看 历史
pourabk-hexaware 提交于 2019-06-03 14:23 . Added datasets
import cv2
import numpy as np
import os
ROOT_DIR = os.getcwd()
import sys
sys.path.append(os.path.join(ROOT_DIR, "samples/coco/"))
import coco
import mrcnn.utils
import mrcnn.model as modellib
# ROOT_DIR = os.getcwd()
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
if not os.path.exists(COCO_MODEL_PATH):
utils.download_trained_weights(COCO_MODEL_PATH)
class InferenceConfig(coco.CocoConfig):
GPU_COUNT = 1
IMAGES_PER_GPU = 1
config = InferenceConfig()
config.display()
model = modellib.MaskRCNN(
mode="inference", model_dir=MODEL_DIR, config=config
)
model.load_weights(COCO_MODEL_PATH, by_name=True)
class_names = [
'BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird',
'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster',
'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush'
]
def random_colors(N):
np.random.seed(1)
colors = [tuple(255 * np.random.rand(3)) for _ in range(N)]
return colors
colors = random_colors(len(class_names))
class_dict = {
name: color for name, color in zip(class_names, colors)
}
def apply_mask(image, mask, color, alpha=0.5):
"""apply mask to image"""
for n, c in enumerate(color):
image[:, :, n] = np.where(
mask == 1,
image[:, :, n] * (1 - alpha) + alpha * c,
image[:, :, n]
)
return image
def display_instances(image, boxes, masks, ids, names, scores):
"""
take the image and results and apply the mask, box, and Label
"""
n_instances = boxes.shape[0]
if not n_instances:
print('NO INSTANCES TO DISPLAY')
else:
assert boxes.shape[0] == masks.shape[-1] == ids.shape[0]
for i in range(n_instances):
if not np.any(boxes[i]):
continue
y1, x1, y2, x2 = boxes[i]
print(boxes[i])
label = names[ids[i]]
if label == "person":
color = class_dict[label]
score = scores[i] if scores is not None else None
caption = '{} {:.2f}'.format(label, score) if score else label
mask = masks[:, :, i]
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(x1, labelSize[1])
image = apply_mask(image, mask, color)
image = cv2.rectangle(image, (x1, y1 - round(1.5 * labelSize[1])), (x1 + round(1.5 * labelSize[0]) + 20, y1 + baseLine),
(255, 255, 255), cv2.FILLED)
image = cv2.rectangle(image, (x1, y1 + 10), (x2, y2), color, 1)
# image = cv2.putText(
# image, caption, (x1, y1), cv2.FONT_HERSHEY_COMPLEX, 0.7, color, 2
# )
image = cv2.putText(image, caption, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.50, color, 1)
return image
if __name__ == '__main__':
"""
test everything
"""
capture = cv2.VideoCapture(0)
# these 2 lines can be removed if you dont have a 1080p camera.
capture.set(cv2.CAP_PROP_FRAME_WIDTH, 480)
capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 320)
while True:
ret, frame = capture.read()
results = model.detect([frame], verbose=0)
r = results[0]
frame = display_instances(
frame, r['rois'], r['masks'], r['class_ids'], class_names, r['scores']
)
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
capture.release()
cv2.destroyAllWindows()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/impecunious/object-detection-masked-rcnn.git
git@gitee.com:impecunious/object-detection-masked-rcnn.git
impecunious
object-detection-masked-rcnn
object-detection-masked-rcnn
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385