<a rel="license" href="http://creativecommons.org/licenses/by/4.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by/4.0/88x31.png" /></a><br /><span xmlns:dct="http://purl.org/dc/terms/" property="dct:title">Kalman Filters and Random Signals in Python</span> by <a xmlns:cc="http://creativecommons.org/ns#" href="https://github.com/rlabbe/Kalman-Filters-and-Random-Signals-in-Python" property="cc:attributionName" rel="cc:attributionURL">Roger Labbe</a> is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.<br />Based on a work at <a xmlns:dct="http://purl.org/dc/terms/" href="https://github.com/rlabbe/Kalman-Filters-and-Random-Signals-in-Python" rel="dct:source">https://github.com/rlabbe/Kalman-Filters-and-Random-Signals-in-Python</a>
Kalman Filter book using Jupyter Notebook. Focuses on building intuition and experience, not formal proofs. Includes Kalman filters,extended Kalman filters, unscented Kalman filters, particle filters, and more. All exercises include solutions.
展开
收起