代码拉取完成,页面将自动刷新
import numpy as np
import torch
import torch.nn as nn
class Maploss(nn.Module):
def __init__(self, use_gpu = True):
super(Maploss,self).__init__()
def single_image_loss(self, pre_loss, loss_label):
batch_size = pre_loss.shape[0]
sum_loss = torch.mean(pre_loss.view(-1))*0
pre_loss = pre_loss.view(batch_size, -1)
loss_label = loss_label.view(batch_size, -1)
internel = batch_size
for i in range(batch_size):
average_number = 0
loss = torch.mean(pre_loss.view(-1)) * 0
positive_pixel = len(pre_loss[i][(loss_label[i] >= 0.1)])
average_number += positive_pixel
if positive_pixel != 0:
posi_loss = torch.mean(pre_loss[i][(loss_label[i] >= 0.1)])
sum_loss += posi_loss
if len(pre_loss[i][(loss_label[i] < 0.1)]) < 3*positive_pixel:
nega_loss = torch.mean(pre_loss[i][(loss_label[i] < 0.1)])
average_number += len(pre_loss[i][(loss_label[i] < 0.1)])
else:
nega_loss = torch.mean(torch.topk(pre_loss[i][(loss_label[i] < 0.1)], 3*positive_pixel)[0])
average_number += 3*positive_pixel
sum_loss += nega_loss
else:
nega_loss = torch.mean(torch.topk(pre_loss[i], 500)[0])
average_number += 500
sum_loss += nega_loss
#sum_loss += loss/average_number
return sum_loss
def forward(self, gh_label, gah_label, p_gh, p_gah, mask):
gh_label = gh_label
gah_label = gah_label
p_gh = p_gh
p_gah = p_gah
loss_fn = torch.nn.MSELoss(reduce=False, size_average=False)
assert p_gh.size() == gh_label.size() and p_gah.size() == gah_label.size()
loss1 = loss_fn(p_gh, gh_label)
loss2 = loss_fn(p_gah, gah_label)
loss_g = torch.mul(loss1, mask)
loss_a = torch.mul(loss2, mask)
char_loss = self.single_image_loss(loss_g, gh_label)
affi_loss = self.single_image_loss(loss_a, gah_label)
return char_loss/loss_g.shape[0] + affi_loss/loss_a.shape[0]
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。