2 Star 5 Fork 2

huzhuhua/Flask-Multi-Camera-Streaming-With-YOLOv4-and-Deep-SORT

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
yolo.py 4.68 KB
一键复制 编辑 原始数据 按行查看 历史
Leon Lok 提交于 2020-05-15 16:21 . upgraded YOLO v3 to YOLO v4
# -*- coding: utf-8 -*-
"""
YOLO v4 detection model.
"""
import colorsys
import numpy as np
from keras import backend as K
from keras.models import load_model
from yolo4.model import yolo_eval, Mish
from yolo4.utils import letterbox_image
import os
from keras.utils import multi_gpu_model
class YOLO(object):
def __init__(self):
self.model_path = 'model_data/yolo4.h5'
self.anchors_path = 'model_data/yolo_anchors.txt'
self.classes_path = 'model_data/coco_classes.txt'
self.gpu_num = 1
self.score = 0.5
self.iou = 0.5
self.class_names = self._get_class()
self.anchors = self._get_anchors()
self.sess = K.get_session()
self.model_image_size = (416, 416) # fixed size or (None, None)
self.is_fixed_size = self.model_image_size != (None, None)
self.boxes, self.scores, self.classes = self.generate()
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def _get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
anchors = np.array(anchors).reshape(-1, 2)
return anchors
def generate(self):
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
self.yolo_model = load_model(model_path, custom_objects={'Mish': Mish}, compile=False)
print('{} model, anchors, and classes loaded.'.format(model_path))
# Generate colors for drawing bounding boxes.
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
np.random.seed(10101) # Fixed seed for consistent colors across runs.
np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
np.random.seed(None) # Reset seed to default.
# Generate output tensor targets for filtered bounding boxes.
self.input_image_shape = K.placeholder(shape=(2, ))
if self.gpu_num>=2:
self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
len(self.class_names), self.input_image_shape,
score_threshold=self.score, iou_threshold=self.iou)
return boxes, scores, classes
def detect_image(self, image):
if self.is_fixed_size:
assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
else:
new_image_size = (image.width - (image.width % 32),
image.height - (image.height % 32))
boxed_image = letterbox_image(image, new_image_size)
image_data = np.array(boxed_image, dtype='float32')
#print(image_data.shape)
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0
})
return_boxes = []
return_scores = []
return_class_names = []
for i, c in reversed(list(enumerate(out_classes))):
predicted_class = self.class_names[c]
if predicted_class != 'person':
continue
box = out_boxes[i]
score = out_scores[i]
x = int(box[1])
y = int(box[0])
w = int(box[3] - box[1])
h = int(box[2] - box[0])
if x < 0 :
w = w + x
x = 0
if y < 0 :
h = h + y
y = 0
return_boxes.append([x, y, w, h])
return_scores.append(score)
return_class_names.append(predicted_class)
return return_boxes, return_scores, return_class_names
def close_session(self):
self.sess.close()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/huzhuhua/Flask-Multi-Camera-Streaming-With-YOLOv4-and-Deep-SORT.git
git@gitee.com:huzhuhua/Flask-Multi-Camera-Streaming-With-YOLOv4-and-Deep-SORT.git
huzhuhua
Flask-Multi-Camera-Streaming-With-YOLOv4-and-Deep-SORT
Flask-Multi-Camera-Streaming-With-YOLOv4-and-Deep-SORT
master

搜索帮助