代码拉取完成,页面将自动刷新
import numpy as np
import random
import re
import pickle
from rdkit import Chem
import sys
import time
import torch
from torch.utils.data import Dataset
from utils import Variable
class Vocabulary(object):
"""A class for handling encoding/decoding from SMILES to an array of indices"""
def __init__(self, init_from_file=None, max_length=140):
self.special_tokens = ['EOS', 'GO']
self.additional_chars = set()
self.chars = self.special_tokens
self.vocab_size = len(self.chars)
self.vocab = dict(zip(self.chars, range(len(self.chars))))
self.reversed_vocab = {v: k for k, v in self.vocab.items()}
self.max_length = max_length
if init_from_file: self.init_from_file(init_from_file)
def encode(self, char_list):
"""Takes a list of characters (eg '[NH]') and encodes to array of indices"""
smiles_matrix = np.zeros(len(char_list), dtype=np.float32)
for i, char in enumerate(char_list):
smiles_matrix[i] = self.vocab[char]
return smiles_matrix
def decode(self, matrix):
"""Takes an array of indices and returns the corresponding SMILES"""
chars = []
for i in matrix:
if i == self.vocab['EOS']: break
chars.append(self.reversed_vocab[i])
smiles = "".join(chars)
smiles = smiles.replace("L", "Cl").replace("R", "Br")
return smiles
def tokenize(self, smiles):
"""Takes a SMILES and return a list of characters/tokens"""
regex = '(\[[^\[\]]{1,6}\])'
smiles = replace_halogen(smiles)
char_list = re.split(regex, smiles)
tokenized = []
for char in char_list:
if char.startswith('['):
tokenized.append(char)
else:
chars = [unit for unit in char]
[tokenized.append(unit) for unit in chars]
tokenized.append('EOS')
return tokenized
def add_characters(self, chars):
"""Adds characters to the vocabulary"""
for char in chars:
self.additional_chars.add(char)
char_list = list(self.additional_chars)
char_list.sort()
self.chars = char_list + self.special_tokens
self.vocab_size = len(self.chars)
self.vocab = dict(zip(self.chars, range(len(self.chars))))
self.reversed_vocab = {v: k for k, v in self.vocab.items()}
def init_from_file(self, file):
"""Takes a file containing \n separated characters to initialize the vocabulary"""
with open(file, 'r') as f:
chars = f.read().split()
self.add_characters(chars)
def __len__(self):
return len(self.chars)
def __str__(self):
return "Vocabulary containing {} tokens: {}".format(len(self), self.chars)
class MolData(Dataset):
"""Custom PyTorch Dataset that takes a file containing SMILES.
Args:
fname : path to a file containing \n separated SMILES.
voc : a Vocabulary instance
Returns:
A custom PyTorch dataset for training the Prior.
"""
def __init__(self, fname, voc):
self.voc = voc
self.smiles = []
with open(fname, 'r') as f:
for line in f:
self.smiles.append(line.split()[0])
def __getitem__(self, i):
mol = self.smiles[i]
tokenized = self.voc.tokenize(mol)
encoded = self.voc.encode(tokenized)
return Variable(encoded)
def __len__(self):
return len(self.smiles)
def __str__(self):
return "Dataset containing {} structures.".format(len(self))
@classmethod
def collate_fn(cls, arr):
"""Function to take a list of encoded sequences and turn them into a batch"""
max_length = max([seq.size(0) for seq in arr])
collated_arr = Variable(torch.zeros(len(arr), max_length))
for i, seq in enumerate(arr):
collated_arr[i, :seq.size(0)] = seq
return collated_arr
class Experience(object):
"""Class for prioritized experience replay that remembers the highest scored sequences
seen and samples from them with probabilities relative to their scores."""
def __init__(self, voc, max_size=100):
self.memory = []
self.max_size = max_size
self.voc = voc
def add_experience(self, experience):
"""Experience should be a list of (smiles, score, prior likelihood) tuples"""
self.memory.extend(experience)
if len(self.memory)>self.max_size:
# Remove duplicates
idxs, smiles = [], []
for i, exp in enumerate(self.memory):
if exp[0] not in smiles:
idxs.append(i)
smiles.append(exp[0])
self.memory = [self.memory[idx] for idx in idxs]
# Retain highest scores
self.memory.sort(key = lambda x: x[1], reverse=True)
self.memory = self.memory[:self.max_size]
print("\nBest score in memory: {:.2f}".format(self.memory[0][1]))
def sample(self, n):
"""Sample a batch size n of experience"""
if len(self.memory)<n:
raise IndexError('Size of memory ({}) is less than requested sample ({})'.format(len(self), n))
else:
scores = [x[1] for x in self.memory]
sample = np.random.choice(len(self), size=n, replace=False, p=scores/np.sum(scores))
sample = [self.memory[i] for i in sample]
smiles = [x[0] for x in sample]
scores = [x[1] for x in sample]
prior_likelihood = [x[2] for x in sample]
tokenized = [self.voc.tokenize(smile) for smile in smiles]
encoded = [Variable(self.voc.encode(tokenized_i)) for tokenized_i in tokenized]
encoded = MolData.collate_fn(encoded)
return encoded, np.array(scores), np.array(prior_likelihood)
def initiate_from_file(self, fname, scoring_function, Prior):
"""Adds experience from a file with SMILES
Needs a scoring function and an RNN to score the sequences.
Using this feature means that the learning can be very biased
and is typically advised against."""
with open(fname, 'r') as f:
smiles = []
for line in f:
smile = line.split()[0]
if Chem.MolFromSmiles(smile):
smiles.append(smile)
scores = scoring_function(smiles)
tokenized = [self.voc.tokenize(smile) for smile in smiles]
encoded = [Variable(self.voc.encode(tokenized_i)) for tokenized_i in tokenized]
encoded = MolData.collate_fn(encoded)
prior_likelihood, _ = Prior.likelihood(encoded.long())
prior_likelihood = prior_likelihood.data.cpu().numpy()
new_experience = zip(smiles, scores, prior_likelihood)
self.add_experience(new_experience)
def print_memory(self, path):
"""Prints the memory."""
print("\n" + "*" * 80 + "\n")
print(" Best recorded SMILES: \n")
print("Score Prior log P SMILES\n")
with open(path, 'w') as f:
f.write("SMILES Score PriorLogP\n")
for i, exp in enumerate(self.memory[:100]):
if i < 50:
print("{:4.2f} {:6.2f} {}".format(exp[1], exp[2], exp[0]))
f.write("{} {:4.2f} {:6.2f}\n".format(*exp))
print("\n" + "*" * 80 + "\n")
def __len__(self):
return len(self.memory)
def replace_halogen(string):
"""Regex to replace Br and Cl with single letters"""
br = re.compile('Br')
cl = re.compile('Cl')
string = br.sub('R', string)
string = cl.sub('L', string)
return string
def tokenize(smiles):
"""Takes a SMILES string and returns a list of tokens.
This will swap 'Cl' and 'Br' to 'L' and 'R' and treat
'[xx]' as one token."""
regex = '(\[[^\[\]]{1,6}\])'
smiles = replace_halogen(smiles)
char_list = re.split(regex, smiles)
tokenized = []
for char in char_list:
if char.startswith('['):
tokenized.append(char)
else:
chars = [unit for unit in char]
[tokenized.append(unit) for unit in chars]
tokenized.append('EOS')
return tokenized
def canonicalize_smiles_from_file(fname):
"""Reads a SMILES file and returns a list of RDKIT SMILES"""
with open(fname, 'r') as f:
smiles_list = []
for i, line in enumerate(f):
if i % 100000 == 0:
print("{} lines processed.".format(i))
smiles = line.split(" ")[0]
mol = Chem.MolFromSmiles(smiles)
if filter_mol(mol):
smiles_list.append(Chem.MolToSmiles(mol))
print("{} SMILES retrieved".format(len(smiles_list)))
return smiles_list
def filter_mol(mol, max_heavy_atoms=50, min_heavy_atoms=10, element_list=[6,7,8,9,16,17,35]):
"""Filters molecules on number of heavy atoms and atom types"""
if mol is not None:
num_heavy = min_heavy_atoms<mol.GetNumHeavyAtoms()<max_heavy_atoms
elements = all([atom.GetAtomicNum() in element_list for atom in mol.GetAtoms()])
if num_heavy and elements:
return True
else:
return False
def write_smiles_to_file(smiles_list, fname):
"""Write a list of SMILES to a file."""
with open(fname, 'w') as f:
for smiles in smiles_list:
f.write(smiles + "\n")
def filter_on_chars(smiles_list, chars):
"""Filters SMILES on the characters they contain.
Used to remove SMILES containing very rare/undesirable
characters."""
smiles_list_valid = []
for smiles in smiles_list:
tokenized = tokenize(smiles)
if all([char in chars for char in tokenized][:-1]):
smiles_list_valid.append(smiles)
return smiles_list_valid
def filter_file_on_chars(smiles_fname, voc_fname):
"""Filters a SMILES file using a vocabulary file.
Only SMILES containing nothing but the characters
in the vocabulary will be retained."""
smiles = []
with open(smiles_fname, 'r') as f:
for line in f:
smiles.append(line.split()[0])
print(smiles[:10])
chars = []
with open(voc_fname, 'r') as f:
for line in f:
chars.append(line.split()[0])
print(chars)
valid_smiles = filter_on_chars(smiles, chars)
with open(smiles_fname + "_filtered", 'w') as f:
for smiles in valid_smiles:
f.write(smiles + "\n")
def combine_voc_from_files(fnames):
"""Combine two vocabularies"""
chars = set()
for fname in fnames:
with open(fname, 'r') as f:
for line in f:
chars.add(line.split()[0])
with open("_".join(fnames) + '_combined', 'w') as f:
for char in chars:
f.write(char + "\n")
def construct_vocabulary(smiles_list):
"""Returns all the characters present in a SMILES file.
Uses regex to find characters/tokens of the format '[x]'."""
add_chars = set()
for i, smiles in enumerate(smiles_list):
regex = '(\[[^\[\]]{1,6}\])'
smiles = replace_halogen(smiles)
char_list = re.split(regex, smiles)
for char in char_list:
if char.startswith('['):
add_chars.add(char)
else:
chars = [unit for unit in char]
[add_chars.add(unit) for unit in chars]
print("Number of characters: {}".format(len(add_chars)))
with open('data/Voc', 'w') as f:
for char in add_chars:
f.write(char + "\n")
return add_chars
if __name__ == "__main__":
smiles_file = sys.argv[1]
print("Reading smiles...")
smiles_list = canonicalize_smiles_from_file(smiles_file)
print("Constructing vocabulary...")
voc_chars = construct_vocabulary(smiles_list)
write_smiles_to_file(smiles_list, "data/mols_filtered.smi")
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。