登录
注册
开源
企业版
高校版
搜索
帮助中心
使用条款
关于我们
开源
企业版
高校版
私有云
Gitee AI
NEW
我知道了
查看详情
登录
注册
代码拉取完成,页面将自动刷新
捐赠
捐赠前请先登录
取消
前往登录
扫描微信二维码支付
取消
支付完成
支付提示
将跳转至支付宝完成支付
确定
取消
Watch
不关注
关注所有动态
仅关注版本发行动态
关注但不提醒动态
1
Star
1
Fork
9
hgkdt
/
MMLSpark
forked from
Gitee 极速下载
/
MMLSpark
确定同步?
同步操作将从
Gitee 极速下载/MMLSpark
强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
删除在远程仓库中不存在的分支和标签
同步 Wiki
(当前仓库的 wiki 将会被覆盖!)
取消
确定
代码
Wiki
统计
流水线
服务
Gitee Pages
质量分析
Jenkins for Gitee
腾讯云托管
腾讯云 Serverless
悬镜安全
阿里云 SAE
Codeblitz
我知道了,不再自动展开
标签
标签名
描述
提交信息
操作
v0.9.4
e6da4d5
2021-11-16 13:18
下载
v0.9.2
81f5f80
2021-11-03 11:10
下载
v0.9.1
6b81426
2021-10-16 04:11
下载
v0.9.0
a6c7fea
2021-10-15 12:58
下载
mmlspark-v1.0.0-rc4
5fc65ab
2021-10-12 10:19
下载
v1.0.0-rc4
5fc65ab
2021-10-12 10:19
下载
mmlspark-v1.0.0-rc3
67891a6
2020-10-03 03:25
下载
v1.0.0-rc3
67891a6
2020-10-03 03:25
下载
mmlspark-v1.0.0-rc2
81e73a2
2020-08-20 01:29
下载
v1.0.0-rc2
81e73a2
2020-08-20 01:29
下载
mmlspark-v1.0.0-rc1
8d31c02
2019-10-16 21:02
下载
v1.0.0-rc1
8d31c02
2019-10-16 21:02
下载
mmlspark-v0.18.1
62946d1
2019-08-20 12:39
下载
v0.18.1
62946d1
2019-08-20 12:39
下载
mmlspark-v0.18.0
3bb48b8
2019-08-19 11:15
下载
v0.18.0
3bb48b8
2019-08-19 11:15
下载
mmlspark-v0.17
- LightGBM evaluation 3-4x faster! - Spark Serving v2 - LightGBM training supports early stopping and regularization - LIME on Spark significantly faster - Both Microbatch and Continuous mode have sub-millisecond latency - Supports fault tolerance - Can reply from anywhere in the pipeline - Fail fast modes for warning callers of bad JSON parsing - Fully based on DataSource API v2 - 3-4x evaluation performance improvement - Add early stopping capabilities - Added L1 and L2 Regularization parameters - Made network init more robust - Fixed bug caused by empty partitions - LIME Parallelization significantly faster for large datasets - Tabular Lime now supported - Added UnicodeNormalizer for working with complex text - Recognize Text exposes parameters for its polling handlers We would like to acknowledge the developers and contributors, both internal and external who helped create this version of MMLSpark. - Ilya Matiach, Markus Cozowicz, Scott Graham, Daniel Ciborowski, Jeremy Reynolds, Miguel Fierro, Robert Alexander, Tao Wu, Sudarshan Raghunathan, Anand Raman,Casey Hong, Karthik Rajendran, Dalitso Banda, Manon Knoertzer, Lars Ahlfors, The Microsoft AI Development Acceleration Program, Cognitive Search Team, Azure Search Team
bba5c10
2019-04-23 15:06
下载
v0.17
- LightGBM evaluation 3-4x faster! - Spark Serving v2 - LightGBM training supports early stopping and regularization - LIME on Spark significantly faster - Both Microbatch and Continuous mode have sub-millisecond latency - Supports fault tolerance - Can reply from anywhere in the pipeline - Fail fast modes for warning callers of bad JSON parsing - Fully based on DataSource API v2 - 3-4x evaluation performance improvement - Add early stopping capabilities - Added L1 and L2 Regularization parameters - Made network init more robust - Fixed bug caused by empty partitions - LIME Parallelization significantly faster for large datasets - Tabular Lime now supported - Added UnicodeNormalizer for working with complex text - Recognize Text exposes parameters for its polling handlers We would like to acknowledge the developers and contributors, both internal and external who helped create this version of MMLSpark. - Ilya Matiach, Markus Cozowicz, Scott Graham, Daniel Ciborowski, Jeremy Reynolds, Miguel Fierro, Robert Alexander, Tao Wu, Sudarshan Raghunathan, Anand Raman,Casey Hong, Karthik Rajendran, Dalitso Banda, Manon Knoertzer, Lars Ahlfors, The Microsoft AI Development Acceleration Program, Cognitive Search Team, Azure Search Team
bba5c10
2019-04-23 15:06
下载
mmlspark-v0.16
- Added the `AzureSearchWriter` for integrating Spark with [Azure Search](https://azure.microsoft.com/en-us/services/search/) - Added the [Smart Adaptive Recommender (SAR)](https://github.com/Azure/mmlspark/blob/master/docs/SAR.md) for better recommendations in SparkML - Added [Named Entity Recognition Cognitive Service](https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/) on Spark - Several new [LightGBM features](#LightGBM-on-Spark) (Multiclass Classification, Windows Support, Class Balancing, Custom Boosting, etc.) - Added Ranking Train Validation Splitter for easy ranking experiments - All Computer Vision Services can now send binary data or URLs to Cognitive Services - Learn how to use the Azure Search writer to create a visual search system for The Metropolitan Museum of Art with: [AzureSearchIndex - Met Artworks.ipynb](https://github.com/Azure/mmlspark/blob/master/notebooks/samples/AzureSearchIndex%20-%20Met%20Artworks.ipynb) - MMLSpark Image Schema now unified with Spark Core - Now supports Query pushdown and [Deep Learning Pipelines](https://github.com/databricks/spark-deep-learning) - Bugfixes for Text Analytics services - `PageSplitter` now propagates nulls - HTTP on Spark now supports socket and read timeouts - `HyperparamBuilder` python wrappers now return idiomatic python objects - Added multiclass classification - Added multiple types of boosting (Gradient Boosting Decision Tree, Random Forest, Dropout meet Multiple Additive Regression Trees, Gradient-based One-Side Sampling) - Added windows OS support/bugfix - LightGBM version bumped to `2.2.200` - Added native support for categorical columns, either through Spark's StringIndexer, MMLSpark's ValueIndexer or list of indexes/slot names parameter - `isUnbalance` parameter for unbalanced datasets - Added boost from average parameter We would like to acknowledge the developers and contributors, both internal and external who helped create this version of MMLSpark. - Ilya Matiach, Casey Hong, Daniel Ciborowski, Karthik Rajendran, Dalitso Banda, Manon Knoertzer, Sudarshan Raghunathan, Anand Raman,Markus Cozowicz, The Microsoft AI Development Acceleration Program, Cognitive Search Team, Azure Search Team
1d29394
2019-03-06 11:43
下载
v0.16
- Added the `AzureSearchWriter` for integrating Spark with [Azure Search](https://azure.microsoft.com/en-us/services/search/) - Added the [Smart Adaptive Recommender (SAR)](https://github.com/Azure/mmlspark/blob/master/docs/SAR.md) for better recommendations in SparkML - Added [Named Entity Recognition Cognitive Service](https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/) on Spark - Several new [LightGBM features](#LightGBM-on-Spark) (Multiclass Classification, Windows Support, Class Balancing, Custom Boosting, etc.) - Added Ranking Train Validation Splitter for easy ranking experiments - All Computer Vision Services can now send binary data or URLs to Cognitive Services - Learn how to use the Azure Search writer to create a visual search system for The Metropolitan Museum of Art with: [AzureSearchIndex - Met Artworks.ipynb](https://github.com/Azure/mmlspark/blob/master/notebooks/samples/AzureSearchIndex%20-%20Met%20Artworks.ipynb) - MMLSpark Image Schema now unified with Spark Core - Now supports Query pushdown and [Deep Learning Pipelines](https://github.com/databricks/spark-deep-learning) - Bugfixes for Text Analytics services - `PageSplitter` now propagates nulls - HTTP on Spark now supports socket and read timeouts - `HyperparamBuilder` python wrappers now return idiomatic python objects - Added multiclass classification - Added multiple types of boosting (Gradient Boosting Decision Tree, Random Forest, Dropout meet Multiple Additive Regression Trees, Gradient-based One-Side Sampling) - Added windows OS support/bugfix - LightGBM version bumped to `2.2.200` - Added native support for categorical columns, either through Spark's StringIndexer, MMLSpark's ValueIndexer or list of indexes/slot names parameter - `isUnbalance` parameter for unbalanced datasets - Added boost from average parameter We would like to acknowledge the developers and contributors, both internal and external who helped create this version of MMLSpark. - Ilya Matiach, Casey Hong, Daniel Ciborowski, Karthik Rajendran, Dalitso Banda, Manon Knoertzer, Sudarshan Raghunathan, Anand Raman,Markus Cozowicz, The Microsoft AI Development Acceleration Program, Cognitive Search Team, Azure Search Team
1d29394
2019-03-06 11:43
下载
下载
请输入验证码,防止盗链导致资源被占用
取消
下载
Scala
1
https://gitee.com/hgkdt/MMLSpark.git
git@gitee.com:hgkdt/MMLSpark.git
hgkdt
MMLSpark
MMLSpark
点此查找更多帮助
搜索帮助
Git 命令在线学习
如何在 Gitee 导入 GitHub 仓库
Git 仓库基础操作
企业版和社区版功能对比
SSH 公钥设置
如何处理代码冲突
仓库体积过大,如何减小?
如何找回被删除的仓库数据
Gitee 产品配额说明
GitHub仓库快速导入Gitee及同步更新
什么是 Release(发行版)
将 PHP 项目自动发布到 packagist.org
评论
仓库举报
回到顶部
登录提示
该操作需登录 Gitee 帐号,请先登录后再操作。
立即登录
没有帐号,去注册