1 Star 0 Fork 0

herolin12/torch-residual-networks

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
train-imagenet-BROKEN.lua 9.32 KB
一键复制 编辑 原始数据 按行查看 历史
Michael Wilber 提交于 2016-01-12 11:12 . Cleanup: Adding license to code
--[[
Copyright (c) 2016 Michael Wilber
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgement in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
--]]
require 'residual-layers'
require 'nn'
require 'cutorch'
require 'cunn'
require 'cudnn'
require 'nngraph'
require 'train-helpers'
display = require 'display'
workbook = (require'lab-workbook-for-trello'):newExperiment{}
opt = lapp[[
--batchSize (default 64) Sub-batch size
--iterSize (default 1) How many sub-batches in each batch
--nThreads (default 4) Data loader threads
--dataTrainRoot (default /mnt/imagenet/train) Data root folder
--dataValRoot (default /mnt/imagenet/val) Data root folder
--verbose (default true)
--loadSize (default 256) Size of image when loading
--fineSize (default 224) Size of image crop
--loadFrom (default "") Model to load
]]
print(opt)
-- create data loader
local DataLoader = paths.dofile('data/data.lua')
dataTrain = DataLoader.new(opt.nThreads, 'folder', {dataRoot = opt.dataTrainRoot,
fineSize = opt.fineSize,
loadSize = opt.loadSize,
batchSize = opt.batchSize,
})
dataVal = DataLoader.new(opt.nThreads, 'folder', {dataRoot = opt.dataValRoot,
fineSize = opt.fineSize,
loadSize = opt.loadSize,
batchSize = opt.batchSize,
})
print("Dataset size: ", dataTrain:size())
-- dataset_train = Dataset.MNIST("mnist.hdf5", 'train')
-- dataset_test = Dataset.MNIST("mnist.hdf5", 'test')
-- mean,std = dataset_train:preprocess()
-- dataset_test:preprocess(mean,std)
-- -- LENET here
-- -- model = nn.Sequential()
-- -- -- stage 1 : mean suppresion -> filter bank -> squashing -> max pooling
-- -- model:add(nn.SpatialConvolutionMM(1, 32, 5, 5, 1,1))
-- -- model:add(nn.ReLU())
-- -- model:add(nn.SpatialMaxPooling(2,2, 2,2))
-- -- -- stage 2 : mean suppresion -> filter bank -> squashing -> max pooling
-- -- model:add(nn.SpatialConvolutionMM(32, 64, 5, 5, 1,1))
-- -- model:add(nn.ReLU())
-- -- model:add(nn.SpatialMaxPooling(2, 2, 2,2))
-- -- -- stage 3 : standard 2-layer MLP:
-- -- model:add(nn.Reshape(64*4*4))
-- -- model:add(nn.Linear(64*4*4, 10))
-- -- -- model:add(nn.ReLU())
-- -- -- model:add(nn.Linear(200, 10))
-- -- model:add(nn.LogSoftMax())
-- Residual network.
-- Input: 3x224x224
if opt.loadFrom == "" then
input = nn.Identity()()
------> 64, 112,112
model = cudnn.SpatialConvolution(3, 64, 7,7, 2,2, 3,3)(input)
--model = nn.SpatialBatchNormalization(64)(model)
model = cudnn.ReLU(true)(model)
model = cudnn.SpatialMaxPooling(3,3, 2,2, 1,1)(model)
------> 64, 56,56
model = addResidualLayer2(model, 64)
model = addResidualLayer2(model, 64)
model = addResidualLayer2(model, 64)
------> 128, 28,28
model = addResidualLayer2(model, 64, 128, 2)
model = addResidualLayer2(model, 128)
model = addResidualLayer2(model, 128)
model = addResidualLayer2(model, 128)
------> 256, 14,14
model = addResidualLayer2(model, 128, 256, 2)
model = addResidualLayer2(model, 256)
model = addResidualLayer2(model, 256)
model = addResidualLayer2(model, 256)
model = addResidualLayer2(model, 256)
model = addResidualLayer2(model, 256)
------> 512, 7,7
model = addResidualLayer2(model, 256, 512, 2)
model = addResidualLayer2(model, 512)
model = addResidualLayer2(model, 512)
------> 1000, 1,1
model = cudnn.ReLU(true)(cudnn.SpatialConvolution(512, 1000, 7,7)(model))
------> 1000
model = nn.Reshape(1000)(model)
model = nn.LogSoftMax()(model)
model = nn.gModule({input}, {model})
model:cuda()
else
print("Loading model from "..opt.loadFrom)
cutorch.setDevice(1)
model = torch.load(opt.loadFrom)
print "Done"
end
loss = nn.ClassNLLCriterion()
loss:cuda()
-- Convert model to multi-GPU model :)
----[[
dmodel = nn.DataParallelTable(1)
dmodel:add(model, 1)
for i=2, 4 do
cutorch.setDevice(i)
dmodel:add(model:clone(), i)
end
cutorch.setDevice(1)
model = dmodel
--]]
-- required to fix call to SyncParameters
model:forward(torch.randn(8, 3, 224,224):cuda())
-- Dirty trick: make the first conv layer weights easier to modify
-- model.modules[2].weight:mul(0.5)
--[[
model:apply(function(m)
-- Initialize weights
local name = torch.type(m)
if name:find('Convolution') then
m.weight:normal(0.0, math.sqrt(2/(m.nInputPlane*m.kW*m.kH)))
print(m.weight:std())
m.bias:fill(0)
elseif name:find('BatchNormalization') then
if m.weight then m.weight:normal(1.0, 0.002) end
if m.bias then m.bias:fill(0) end
end
end)
--]]
sgdState = {
--- For SGD with momentum ---
----[[
-- My semi-working settings
learningRate = 0.001,
weightDecay = 1e-4,
-- Settings from their paper
--learningRate = 0.1,
--weightDecay = 1e-4,
momentum = 0.9,
dampening = 0,
nesterov = true,
--]]
--- For rmsprop, which is very fiddly and I don't trust it at all ---
--[[
learningRate = 1e-5,
alpha = 0.9,
whichOptimMethod = 'rmsprop',
--]]
--- For adadelta, which sucks ---
--[[
rho = 0.3,
whichOptimMethod = 'adadelta',
--]]
--- For adagrad, which also sucks ---
--[[
learningRate = 3e-4,
whichOptimMethod = 'adagrad',
--]]
--- For adam, which also sucks ---
--[[
learningRate = 0.005,
whichOptimMethod = 'adam',
--]]
--- For the alternate implementation of NAG ---
--[[
learningRate = 0.01,
weightDecay = 1e-6,
momentum = 0.9,
whichOptimMethod = 'nag',
--]]
}
if opt.loadFrom ~= "" then
print("Trying to load sgdState from "..string.gsub(opt.loadFrom, "model", "sgdState"))
collectgarbage(); collectgarbage(); collectgarbage()
sgdState = torch.load(""..string.gsub(opt.loadFrom, "model", "sgdState"))
collectgarbage(); collectgarbage(); collectgarbage()
print("Got", sgdState.nSampledImages,"images")
end
-- Actual Training! -----------------------------
weights, gradients = model:getParameters()
function forwardBackwardBatch(batch)
-- After every batch, the different GPUs all have different gradients
-- (because they saw different data), and only the first GPU's weights were
-- actually updated.
-- We have to do two changes:
-- - Copy the new parameters from GPU #1 to the rest of them;
-- - Zero the gradient parameters so we can accumulate them again.
model:training()
model:syncParameters() -- This copies parameters from first GPU to
model:zeroGradParameters()
--[[
if sgdState.nSampledImages < 10000 then
sgdState.learningRate = 0.001
else
sgdState.learningRate = 0.01
end
--]]
local loss_val = 0
local N = opt.iterSize
local inputs, labels
for i=1,N do
inputs, labels = dataTrain:getBatch()
inputs = inputs:cuda()
labels = labels:cuda()
collectgarbage(); collectgarbage();
local y = model:forward(inputs)
loss_val = loss_val + loss:forward(y, labels)
local df_dw = loss:backward(y, labels)
model:backward(inputs, df_dw)
-- The above call will accumulate all GPUs' parameters onto GPU #1
end
loss_val = loss_val / N
gradients:mul( 1.0 / N )
if sgdState.nEvalCounter % 20 == 0 then
display.image(model.modules[1].modules[2].weight, {win=24, title="First layer weights"})
end
return loss_val, gradients, inputs:size(1) * N
end
function evalModel()
print("No evaluation...")
-- if sgdState.epochCounter > 10 then os.exit(1) end
local results = evaluateModel(model, dataVal)
print(results)
--table.insert(sgdState.accuracies, acc)
end
--[[
local results = evaluateModel(model, dataVal)
print(results)
--]]
--[[
require 'graph'
graph.dot(model.fg, 'MLP', '/tmp/MLP')
os.execute('convert /tmp/MLP.svg /tmp/MLP.png')
display.image(image.load('/tmp/MLP.png'), {title="Network Structure", win=23})
--]]
--[[
require 'ncdu-model-explore'
local y = model:forward(torch.randn(opt.batchSize, 3, 224,224):cuda())
local df_dw = loss:backward(y, torch.zeros(opt.batchSize):cuda())
model:backward(torch.randn(opt.batchSize,3,224,224):cuda(), df_dw)
exploreNcdu(model)
--]]
-- --[[
TrainingHelpers.trainForever(
model.modules[1],
forwardBackwardBatch,
weights,
sgdState,
dataTrain:size(),
evalModel,
"snapshots/imagenet-residual-experiment2"
)
--]]
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/herolin12/torch-residual-networks.git
git@gitee.com:herolin12/torch-residual-networks.git
herolin12
torch-residual-networks
torch-residual-networks
master

搜索帮助