代码拉取完成,页面将自动刷新
--[[
Copyright (c) 2016 Michael Wilber
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgement in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
--]]
require 'optim'
TrainingHelpers = {}
function evaluateModel(model, datasetTest, batchSize)
print("Evaluating...")
model:evaluate()
local correct1 = 0
local correct5 = 0
local total = 0
local batches = torch.range(1, datasetTest:size()):long():split(batchSize)
for i=1,#batches do
collectgarbage(); collectgarbage();
local results = datasetTest:sampleIndices(nil, batches[i])
local batch, labels = results.inputs, results.outputs
labels = labels:long()
local y = model:forward(batch:cuda()):float()
local _, indices = torch.sort(y, 2, true)
-- indices has shape (batchSize, nClasses)
local top1 = indices:select(2, 1)
local top5 = indices:narrow(2, 1,5)
correct1 = correct1 + torch.eq(top1, labels):sum()
correct5 = correct5 + torch.eq(top5, labels:view(-1, 1):expandAs(top5)):sum()
total = total + indices:size(1)
xlua.progress(total, datasetTest:size())
end
return {correct1=correct1/total, correct5=correct5/total}
end
function TrainingHelpers.trainForever(forwardBackwardBatch, weights, sgdState, epochSize, afterEpoch)
local d = Date{os.date()}
local modelTag = string.format("%04d%02d%02d-%d",
d:year(), d:month(), d:day(), torch.random())
sgdState.epochSize = epochSize
sgdState.epochCounter = sgdState.epochCounter or 0
sgdState.nSampledImages = sgdState.nSampledImages or 0
sgdState.nEvalCounter = sgdState.nEvalCounter or 0
local whichOptimMethod = optim.sgd
if sgdState.whichOptimMethod then
whichOptimMethod = optim[sgdState.whichOptimMethod]
end
while true do -- Each epoch
collectgarbage(); collectgarbage()
-- Run forward and backward pass on inputs and labels
local loss_val, gradients, batchProcessed = forwardBackwardBatch()
-- SGD step: modifies weights in-place
whichOptimMethod(function() return loss_val, gradients end,
weights,
sgdState)
-- Display progress and loss
sgdState.nSampledImages = sgdState.nSampledImages + batchProcessed
sgdState.nEvalCounter = sgdState.nEvalCounter + 1
xlua.progress(sgdState.nSampledImages%epochSize, epochSize)
if math.floor(sgdState.nSampledImages / epochSize) ~= sgdState.epochCounter then
-- Epoch completed!
xlua.progress(epochSize, epochSize)
sgdState.epochCounter = math.floor(sgdState.nSampledImages / epochSize)
if afterEpoch then afterEpoch() end
print("\n\n----- Epoch "..sgdState.epochCounter.." -----")
end
end
end
-- Some other stuff that may be helpful but I need to refactor it
-- function TrainingHelpers.inspectLayer(layer, fields)
-- function inspect(x)
-- if x then
-- x = x:double():view(-1)
-- return {
-- p5 = (x:kthvalue(1 + 0.05*x:size(1))[1]),
-- mean = x:mean(),
-- p95 = (x:kthvalue(1 + 0.95*x:size(1))[1]),
-- var = x:var(),
-- }
-- end
-- end
-- local result = {name = tostring(layer)}
-- for _,field in ipairs(fields) do
-- result[field] = inspect(layer[field])
-- end
-- return result
-- end
-- function TrainingHelpers.printLayerInspection(li, fields)
-- print("- "..tostring(li.name))
-- if (string.find(tostring(li.name), "ReLU")
-- or string.find(tostring(li.name), "BatchNorm")
-- or string.find(tostring(li.name), "View")
-- ) then
-- -- Do not print these layers
-- else
-- for _,field in ipairs(fields) do
-- local lf = li[field]
-- if lf then
-- print(string.format(
-- "%20s 5p: %+3e Mean: %+3e 95p: %+3e Var: %+3e",
-- field, lf.p5, lf.mean, lf.p95, lf.var))
-- end
-- end
-- end
-- end
-- function TrainingHelpers.inspectModel(model)
-- local results = {}
-- for i,layer in ipairs(model.modules) do
-- results[i] = TrainingHelpers.inspectLayer(layer, {"weight",
-- "gradWeight",
-- "bias",
-- "gradBias",
-- "output"})
-- end
-- return results
-- end
-- function TrainingHelpers.printInspection(inspection)
-- print("\n\n\n")
-- print(" \x1b[31m---------------------- Weights ---------------------- \x1b[0m")
-- for i,layer in ipairs(inspection) do
-- TrainingHelpers.printLayerInspection(layer, {"weight", "gradWeight"})
-- end
-- print(" \x1b[31m---------------------- Biases ---------------------- \x1b[0m")
-- for i,layer in ipairs(inspection) do
-- TrainingHelpers.printLayerInspection(layer, {"bias", "gradBias"})
-- end
-- print(" \x1b[31m---------------------- Outputs ---------------------- \x1b[0m")
-- for i,layer in ipairs(inspection) do
-- TrainingHelpers.printLayerInspection(layer, {"output"})
-- end
-- end
-- function displayWeights(model)
-- local layers = {}
-- -- Go through each module and add its weight and its gradient.
-- -- X axis = layer number.
-- -- Y axis = weight / gradient.
-- for i, li in ipairs(model.modules) do
-- if not (string.find(tostring(li), "ReLU")
-- or string.find(tostring(li), "BatchNorm")
-- or string.find(tostring(li), "View")
-- ) then
-- if li.gradWeight then
-- --print(tostring(li),li.weight:mean())
-- layers[#layers+1] = {i,
-- -- Weight
-- {li.weight:mean() - li.weight:std(),
-- li.weight:mean(),
-- li.weight:mean() + li.weight:std()},
-- -- Gradient
-- {li.gradWeight:mean() - li.gradWeight:std(),
-- li.gradWeight:mean(),
-- li.gradWeight:mean() + li.gradWeight:std()},
-- -- Output
-- {li.output:mean() - li.output:std(),
-- li.output:mean(),
-- li.output:mean() + li.output:std()},
-- }
-- end
-- end
-- end
-- -- Plot the result
-- --
-- workbook:plot("Layers", layers, {
-- labels={"Layer", "Weights", "Gradients", "Outputs"},
-- customBars=true, errorBars=true,
-- title='Network Weights',
-- rollPeriod=1,
-- win=26,
-- --annotations={"o"},
-- --axes={x={valueFormatter="function(x) {return x; }"}},
-- })
-- end
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。