1 Star 0 Fork 0

herolin12/torch-residual-networks

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
train-cifar.lua 7.96 KB
一键复制 编辑 原始数据 按行查看 历史
--[[
Copyright (c) 2016 Michael Wilber
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgement in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
--]]
require 'residual-layers'
require 'nn'
require 'data.cifar-dataset'
require 'cutorch'
require 'cunn'
require 'cudnn'
require 'nngraph'
require 'train-helpers'
local nninit = require 'nninit'
-- Feel free to comment these out.
hasWorkbook, labWorkbook = pcall(require, 'lab-workbook')
if hasWorkbook then
workbook = labWorkbook:newExperiment{}
lossLog = workbook:newTimeSeriesLog("Training loss",
{"nImages", "loss"},
100)
errorLog = workbook:newTimeSeriesLog("Testing Error",
{"nImages", "error"})
else
print "WARNING: No workbook support. No results will be saved."
end
opt = lapp[[
--batchSize (default 128) Sub-batch size
--iterSize (default 1) How many sub-batches in each batch
--Nsize (default 3) Model has 6*n+2 layers.
--dataRoot (default /mnt/cifar) Data root folder
--loadFrom (default "") Model to load
--experimentName (default "snapshots/cifar-residual-experiment1")
]]
print(opt)
-- create data loader
dataTrain = Dataset.CIFAR(opt.dataRoot, "train", opt.batchSize)
dataTest = Dataset.CIFAR(opt.dataRoot, "test", opt.batchSize)
local mean,std = dataTrain:preprocess()
dataTest:preprocess(mean,std)
print("Dataset size: ", dataTrain:size())
-- Residual network.
-- Input: 3x32x32
local N = opt.Nsize
if opt.loadFrom == "" then
input = nn.Identity()()
------> 3, 32,32
model = cudnn.SpatialConvolution(3, 16, 3,3, 1,1, 1,1)
:init('weight', nninit.kaiming, {gain = 'relu'})
:init('bias', nninit.constant, 0)(input)
model = cudnn.SpatialBatchNormalization(16)(model)
model = cudnn.ReLU(true)(model)
------> 16, 32,32 First Group
for i=1,N do model = addResidualLayer2(model, 16) end
------> 32, 16,16 Second Group
model = addResidualLayer2(model, 16, 32, 2)
for i=1,N-1 do model = addResidualLayer2(model, 32) end
------> 64, 8,8 Third Group
model = addResidualLayer2(model, 32, 64, 2)
for i=1,N-1 do model = addResidualLayer2(model, 64) end
------> 10, 8,8 Pooling, Linear, Softmax
model = nn.SpatialAveragePooling(8,8)(model)
model = nn.Reshape(64)(model)
model = nn.Linear(64, 10)(model)
model = nn.LogSoftMax()(model)
model = nn.gModule({input}, {model})
model:cuda()
--print(#model:forward(torch.randn(100, 3, 32,32):cuda()))
else
print("Loading model from "..opt.loadFrom)
cutorch.setDevice(1)
model = torch.load(opt.loadFrom)
print "Done"
end
loss = nn.ClassNLLCriterion()
loss:cuda()
sgdState = {
--- For SGD with momentum ---
----[[
-- My semi-working settings
learningRate = "will be set later",
weightDecay = 1e-4,
-- Settings from their paper
--learningRate = 0.1,
--weightDecay = 1e-4,
momentum = 0.9,
dampening = 0,
nesterov = true,
--]]
--- For rmsprop, which is very fiddly and I don't trust it at all ---
--[[
learningRate = "Will be set later",
alpha = 0.9,
whichOptimMethod = 'rmsprop',
--]]
--- For adadelta, which sucks ---
--[[
rho = 0.3,
whichOptimMethod = 'adadelta',
--]]
--- For adagrad, which also sucks ---
--[[
learningRate = "Will be set later",
whichOptimMethod = 'adagrad',
--]]
--- For adam, which also sucks ---
--[[
learningRate = 0.005,
whichOptimMethod = 'adam',
--]]
--- For the alternate implementation of NAG ---
--[[
learningRate = 0.01,
weightDecay = 1e-6,
momentum = 0.9,
whichOptimMethod = 'nag',
--]]
--
--whichOptimMethod = opt.whichOptimMethod,
}
if opt.loadFrom ~= "" then
print("Trying to load sgdState from "..string.gsub(opt.loadFrom, "model", "sgdState"))
collectgarbage(); collectgarbage(); collectgarbage()
sgdState = torch.load(""..string.gsub(opt.loadFrom, "model", "sgdState"))
collectgarbage(); collectgarbage(); collectgarbage()
print("Got", sgdState.nSampledImages,"images")
end
-- Actual Training! -----------------------------
weights, gradients = model:getParameters()
function forwardBackwardBatch(batch)
-- After every batch, the different GPUs all have different gradients
-- (because they saw different data), and only the first GPU's weights were
-- actually updated.
-- We have to do two changes:
-- - Copy the new parameters from GPU #1 to the rest of them;
-- - Zero the gradient parameters so we can accumulate them again.
model:training()
gradients:zero()
--[[
-- Reset BN momentum, nvidia-style
model:apply(function(m)
if torch.type(m):find('BatchNormalization') then
m.momentum = 1.0 / ((m.count or 0) + 1)
m.count = (m.count or 0) + 1
print("--Resetting BN momentum to", m.momentum)
print("-- Running mean is", m.running_mean:mean(), "+-", m.running_mean:std())
end
end)
--]]
-- From https://github.com/bgshih/cifar.torch/blob/master/train.lua#L119-L128
if sgdState.epochCounter < 80 then
sgdState.learningRate = 0.1
elseif sgdState.epochCounter < 120 then
sgdState.learningRate = 0.01
else
sgdState.learningRate = 0.001
end
local loss_val = 0
local N = opt.iterSize
local inputs, labels
for i=1,N do
inputs, labels = dataTrain:getBatch()
inputs = inputs:cuda()
labels = labels:cuda()
collectgarbage(); collectgarbage();
local y = model:forward(inputs)
loss_val = loss_val + loss:forward(y, labels)
local df_dw = loss:backward(y, labels)
model:backward(inputs, df_dw)
-- The above call will accumulate all GPUs' parameters onto GPU #1
end
loss_val = loss_val / N
gradients:mul( 1.0 / N )
if hasWorkbook then
lossLog{nImages = sgdState.nSampledImages,
loss = loss_val}
end
return loss_val, gradients, inputs:size(1) * N
end
function evalModel()
local results = evaluateModel(model, dataTest, opt.batchSize)
if hasWorkbook then
errorLog{nImages = sgdState.nSampledImages or 0,
error = 1.0 - results.correct1}
if (sgdState.epochCounter or -1) % 10 == 0 then
workbook:saveTorch("model", model)
workbook:saveTorch("sgdState", sgdState)
end
end
if (sgdState.epochCounter or 0) > 200 then
print("Training complete, go home")
os.exit()
end
end
evalModel()
--[[
require 'graph'
graph.dot(model.fg, 'MLP', '/tmp/MLP')
os.execute('convert /tmp/MLP.svg /tmp/MLP.png')
display.image(image.load('/tmp/MLP.png'), {title="Network Structure", win=23})
--]]
--[[
require 'ncdu-model-explore'
local y = model:forward(torch.randn(opt.batchSize, 3, 32,32):cuda())
local df_dw = loss:backward(y, torch.zeros(opt.batchSize):cuda())
model:backward(torch.randn(opt.batchSize,3,32,32):cuda(), df_dw)
exploreNcdu(model)
--]]
-- Begin saving the experiment to our workbook
if hasWorkbook then
workbook:saveGitStatus()
workbook:saveJSON("opt", opt)
end
-- --[[
TrainingHelpers.trainForever(
forwardBackwardBatch,
weights,
sgdState,
dataTrain:size(),
evalModel
)
--]]
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/herolin12/torch-residual-networks.git
git@gitee.com:herolin12/torch-residual-networks.git
herolin12
torch-residual-networks
torch-residual-networks
master

搜索帮助