3 Star 8 Fork 5

jsxyhelu/GOMfcTemplate2

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
road-segmentation-adas-0001.xml 172.44 KB
一键复制 编辑 原始数据 按行查看 历史
jsxyhelu 提交于 2019-08-16 16:04 . 基本信息
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265
<?xml version="1.0" ?>
<net batch="1" name="road-segmentation-adas-0001" version="5">
<layers>
<layer id="0" name="data" precision="FP32" type="Input">
<output>
<port id="0">
<dim>1</dim>
<dim>3</dim>
<dim>512</dim>
<dim>896</dim>
</port>
</output>
</layer>
<layer id="1" name="L0000_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="3,3" output="16" pads_begin="1,1" pads_end="1,1" strides="2,2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>3</dim>
<dim>512</dim>
<dim>896</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="0" size="1728"/>
<biases offset="1728" size="64"/>
</blobs>
</layer>
<layer id="2" name="L0001_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="3" name="L0002_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="8" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="1792" size="512"/>
<biases offset="2304" size="32"/>
</blobs>
</layer>
<layer id="4" name="L0003_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="5" name="L0004_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="8" kernel="3,3" output="8" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="2336" size="288"/>
<biases offset="2624" size="32"/>
</blobs>
</layer>
<layer id="6" name="L0005_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="7" name="L0006_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="16" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="2656" size="512"/>
<biases offset="3168" size="64"/>
</blobs>
</layer>
<layer id="8" name="L0007_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="9" name="L0008_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="10" name="L0009_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="8" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="3232" size="512"/>
<biases offset="3744" size="32"/>
</blobs>
</layer>
<layer id="11" name="L0010_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="12" name="L0011_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="8" kernel="3,3" output="8" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="3776" size="288"/>
<biases offset="4064" size="32"/>
</blobs>
</layer>
<layer id="13" name="L0012_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="14" name="L0013_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="24" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>24</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="4096" size="768"/>
<biases offset="4864" size="96"/>
</blobs>
</layer>
<layer id="15" name="L0014_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="24" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>24</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="4960" size="1536"/>
<biases offset="6496" size="96"/>
</blobs>
</layer>
<layer id="16" name="L0015_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>256</dim>
<dim>448</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>24</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>24</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="17" name="L0016_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>24</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="18" name="L0017_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="8" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="6592" size="768"/>
<biases offset="7360" size="32"/>
</blobs>
</layer>
<layer id="19" name="L0018_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="20" name="L0019_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="8" kernel="3,3" output="8" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="7392" size="288"/>
<biases offset="7680" size="32"/>
</blobs>
</layer>
<layer id="21" name="L0020_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="22" name="L0021_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="24" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>24</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="7712" size="768"/>
<biases offset="8480" size="96"/>
</blobs>
</layer>
<layer id="23" name="L0022_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>256</dim>
<dim>448</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>24</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>24</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="24" name="L0023_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>24</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="25" name="L0024_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="8" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="8576" size="768"/>
<biases offset="9344" size="32"/>
</blobs>
</layer>
<layer id="26" name="L0025_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="27" name="L0026_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="8" kernel="3,3" output="8" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="9376" size="288"/>
<biases offset="9664" size="32"/>
</blobs>
</layer>
<layer id="28" name="L0027_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="29" name="L0028_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="32" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="9696" size="1024"/>
<biases offset="10720" size="128"/>
</blobs>
</layer>
<layer id="30" name="L0029_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="32" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="10848" size="3072"/>
<biases offset="13920" size="128"/>
</blobs>
</layer>
<layer id="31" name="L0030_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="32" name="L0031_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="33" name="L0032_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="8" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="14048" size="1024"/>
<biases offset="15072" size="32"/>
</blobs>
</layer>
<layer id="34" name="L0033_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="35" name="L0034_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="8" kernel="3,3" output="8" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="15104" size="288"/>
<biases offset="15392" size="32"/>
</blobs>
</layer>
<layer id="36" name="L0035_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="37" name="L0036_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="32" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>8</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="15424" size="1024"/>
<biases offset="16448" size="128"/>
</blobs>
</layer>
<layer id="38" name="L0037_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="39" name="L0038_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="40" name="L0039_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="2,2" output="16" pads_begin="0,0" pads_end="0,0" strides="2,2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="16576" size="8192"/>
<biases offset="24768" size="64"/>
</blobs>
</layer>
<layer id="41" name="L0040_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="42" name="L0041_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="16" kernel="3,3" output="16" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="24832" size="576"/>
<biases offset="25408" size="64"/>
</blobs>
</layer>
<layer id="43" name="L0042_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="44" name="L0043_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="25472" size="3072"/>
<biases offset="28544" size="192"/>
</blobs>
</layer>
<layer id="45" name="L0044_MaxPool2d" precision="FP32" type="Pooling">
<data exclude-pad="true" kernel="2,2" pads_begin="0,0" pads_end="0,0" pool-method="max" rounding_type="ceil" strides="2,2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="46" name="L0045_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="28736" size="6144"/>
<biases offset="34880" size="192"/>
</blobs>
</layer>
<layer id="47" name="L0046_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="48" name="L0047_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="49" name="L0048_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="16" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="35072" size="3072"/>
<biases offset="38144" size="64"/>
</blobs>
</layer>
<layer id="50" name="L0049_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="51" name="L0050_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="16" kernel="3,3" output="16" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="38208" size="576"/>
<biases offset="38784" size="64"/>
</blobs>
</layer>
<layer id="52" name="L0051_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="53" name="L0052_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="38848" size="3072"/>
<biases offset="41920" size="192"/>
</blobs>
</layer>
<layer id="54" name="L0053_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="55" name="L0054_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="56" name="L0055_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="16" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="42112" size="3072"/>
<biases offset="45184" size="64"/>
</blobs>
</layer>
<layer id="57" name="L0056_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="58" name="L0057_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="16" kernel="3,3" output="16" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="45248" size="576"/>
<biases offset="45824" size="64"/>
</blobs>
</layer>
<layer id="59" name="L0058_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="60" name="L0059_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="45888" size="3072"/>
<biases offset="48960" size="192"/>
</blobs>
</layer>
<layer id="61" name="L0060_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="62" name="L0061_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="63" name="L0062_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="16" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="49152" size="3072"/>
<biases offset="52224" size="64"/>
</blobs>
</layer>
<layer id="64" name="L0063_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="65" name="L0064_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="2,2" group="16" kernel="3,3" output="16" pads_begin="2,2" pads_end="2,2" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="52288" size="576"/>
<biases offset="52864" size="64"/>
</blobs>
</layer>
<layer id="66" name="L0065_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="67" name="L0066_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="52928" size="3072"/>
<biases offset="56000" size="192"/>
</blobs>
</layer>
<layer id="68" name="L0067_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="69" name="L0068_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="70" name="L0069_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="16" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="56192" size="3072"/>
<biases offset="59264" size="64"/>
</blobs>
</layer>
<layer id="71" name="L0070_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="72" name="L0071_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="3,3" group="16" kernel="3,3" output="16" pads_begin="3,3" pads_end="3,3" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="59328" size="576"/>
<biases offset="59904" size="64"/>
</blobs>
</layer>
<layer id="73" name="L0072_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="74" name="L0073_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="59968" size="3072"/>
<biases offset="63040" size="192"/>
</blobs>
</layer>
<layer id="75" name="L0074_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="76" name="L0075_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="77" name="L0076_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="16" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="63232" size="3072"/>
<biases offset="66304" size="64"/>
</blobs>
</layer>
<layer id="78" name="L0077_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="79" name="L0078_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="16" kernel="3,3" output="16" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="66368" size="576"/>
<biases offset="66944" size="64"/>
</blobs>
</layer>
<layer id="80" name="L0079_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="81" name="L0080_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="67008" size="3072"/>
<biases offset="70080" size="192"/>
</blobs>
</layer>
<layer id="82" name="L0081_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="83" name="L0082_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="84" name="L0083_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="16" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="70272" size="3072"/>
<biases offset="73344" size="64"/>
</blobs>
</layer>
<layer id="85" name="L0084_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="86" name="L0085_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="2,2" group="16" kernel="3,3" output="16" pads_begin="2,2" pads_end="2,2" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="73408" size="576"/>
<biases offset="73984" size="64"/>
</blobs>
</layer>
<layer id="87" name="L0086_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="88" name="L0087_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="74048" size="3072"/>
<biases offset="77120" size="192"/>
</blobs>
</layer>
<layer id="89" name="L0088_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="90" name="L0089_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="91" name="L0090_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="16" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="77312" size="3072"/>
<biases offset="80384" size="64"/>
</blobs>
</layer>
<layer id="92" name="L0091_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="93" name="L0092_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="3,3" group="16" kernel="3,3" output="16" pads_begin="3,3" pads_end="3,3" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="80448" size="576"/>
<biases offset="81024" size="64"/>
</blobs>
</layer>
<layer id="94" name="L0093_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="95" name="L0094_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="81088" size="3072"/>
<biases offset="84160" size="192"/>
</blobs>
</layer>
<layer id="96" name="L0095_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="97" name="L0096_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="98" name="L0097_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="16" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="84352" size="3072"/>
<biases offset="87424" size="64"/>
</blobs>
</layer>
<layer id="99" name="L0098_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="100" name="L0099_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="16" kernel="3,3" output="16" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="87488" size="576"/>
<biases offset="88064" size="64"/>
</blobs>
</layer>
<layer id="101" name="L0100_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="102" name="L0101_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="88128" size="3072"/>
<biases offset="91200" size="192"/>
</blobs>
</layer>
<layer id="103" name="L0102_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="104" name="L0103_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="105" name="L0104_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="2,2" output="32" pads_begin="0,0" pads_end="0,0" strides="2,2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="91392" size="24576"/>
<biases offset="115968" size="128"/>
</blobs>
</layer>
<layer id="106" name="L0105_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="107" name="L0106_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="32" kernel="3,3" output="32" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="116096" size="1152"/>
<biases offset="117248" size="128"/>
</blobs>
</layer>
<layer id="108" name="L0107_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="109" name="L0108_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="64" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="117376" size="8192"/>
<biases offset="125568" size="256"/>
</blobs>
</layer>
<layer id="110" name="L0109_MaxPool2d" precision="FP32" type="Pooling">
<data exclude-pad="true" kernel="2,2" pads_begin="0,0" pads_end="0,0" pool-method="max" rounding_type="ceil" strides="2,2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="111" name="L0110_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="64" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="125824" size="12288"/>
<biases offset="138112" size="256"/>
</blobs>
</layer>
<layer id="112" name="L0111_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="113" name="L0112_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="114" name="L0113_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="32" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="138368" size="8192"/>
<biases offset="146560" size="128"/>
</blobs>
</layer>
<layer id="115" name="L0114_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="116" name="L0115_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="32" kernel="3,3" output="32" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="146688" size="1152"/>
<biases offset="147840" size="128"/>
</blobs>
</layer>
<layer id="117" name="L0116_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="118" name="L0117_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="64" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="147968" size="8192"/>
<biases offset="156160" size="256"/>
</blobs>
</layer>
<layer id="119" name="L0118_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="120" name="L0119_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="121" name="L0120_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="32" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="156416" size="8192"/>
<biases offset="164608" size="128"/>
</blobs>
</layer>
<layer id="122" name="L0121_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="123" name="L0122_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="32" kernel="3,3" output="32" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="164736" size="1152"/>
<biases offset="165888" size="128"/>
</blobs>
</layer>
<layer id="124" name="L0123_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="125" name="L0124_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="64" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="166016" size="8192"/>
<biases offset="174208" size="256"/>
</blobs>
</layer>
<layer id="126" name="L0125_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="127" name="L0126_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="128" name="L0127_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="32" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="174464" size="8192"/>
<biases offset="182656" size="128"/>
</blobs>
</layer>
<layer id="129" name="L0128_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="130" name="L0129_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="32" kernel="3,3" output="32" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="182784" size="1152"/>
<biases offset="183936" size="128"/>
</blobs>
</layer>
<layer id="131" name="L0130_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="132" name="L0131_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="64" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="184064" size="8192"/>
<biases offset="192256" size="256"/>
</blobs>
</layer>
<layer id="133" name="L0132_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="134" name="L0133_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="135" name="L0134_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="40" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="192512" size="10240"/>
<biases offset="202752" size="160"/>
</blobs>
</layer>
<layer id="136" name="L0135_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="137" name="L0136_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="2,2" group="40" kernel="3,3" output="40" pads_begin="2,2" pads_end="2,2" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="202912" size="1440"/>
<biases offset="204352" size="160"/>
</blobs>
</layer>
<layer id="138" name="L0137_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="139" name="L0138_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="80" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="204512" size="12800"/>
<biases offset="217312" size="320"/>
</blobs>
</layer>
<layer id="140" name="L0139_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="80" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="217632" size="20480"/>
<biases offset="238112" size="320"/>
</blobs>
</layer>
<layer id="141" name="L0140_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="142" name="L0141_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="143" name="L0142_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="40" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="238432" size="12800"/>
<biases offset="251232" size="160"/>
</blobs>
</layer>
<layer id="144" name="L0143_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="145" name="L0144_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="3,3" group="40" kernel="3,3" output="40" pads_begin="3,3" pads_end="3,3" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="251392" size="1440"/>
<biases offset="252832" size="160"/>
</blobs>
</layer>
<layer id="146" name="L0145_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="147" name="L0146_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="80" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="252992" size="12800"/>
<biases offset="265792" size="320"/>
</blobs>
</layer>
<layer id="148" name="L0147_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="149" name="L0148_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="150" name="L0149_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="40" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="266112" size="12800"/>
<biases offset="278912" size="160"/>
</blobs>
</layer>
<layer id="151" name="L0150_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="152" name="L0151_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="4,4" group="40" kernel="3,3" output="40" pads_begin="4,4" pads_end="4,4" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="279072" size="1440"/>
<biases offset="280512" size="160"/>
</blobs>
</layer>
<layer id="153" name="L0152_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="154" name="L0153_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="80" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="280672" size="12800"/>
<biases offset="293472" size="320"/>
</blobs>
</layer>
<layer id="155" name="L0154_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="156" name="L0155_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="157" name="L0156_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="40" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="293792" size="12800"/>
<biases offset="306592" size="160"/>
</blobs>
</layer>
<layer id="158" name="L0157_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="159" name="L0158_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="40" kernel="3,3" output="40" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="306752" size="1440"/>
<biases offset="308192" size="160"/>
</blobs>
</layer>
<layer id="160" name="L0159_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="161" name="L0160_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="80" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="308352" size="12800"/>
<biases offset="321152" size="320"/>
</blobs>
</layer>
<layer id="162" name="L0161_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="163" name="L0162_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="164" name="L0163_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="40" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="321472" size="12800"/>
<biases offset="334272" size="160"/>
</blobs>
</layer>
<layer id="165" name="L0164_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="166" name="L0165_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="40" kernel="3,3" output="40" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="334432" size="1440"/>
<biases offset="335872" size="160"/>
</blobs>
</layer>
<layer id="167" name="L0166_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="168" name="L0167_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="80" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="336032" size="12800"/>
<biases offset="348832" size="320"/>
</blobs>
</layer>
<layer id="169" name="L0168_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="170" name="L0169_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="171" name="L0170_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="40" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="349152" size="12800"/>
<biases offset="361952" size="160"/>
</blobs>
</layer>
<layer id="172" name="L0171_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="173" name="L0172_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="2,2" group="40" kernel="3,3" output="40" pads_begin="2,2" pads_end="2,2" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="362112" size="1440"/>
<biases offset="363552" size="160"/>
</blobs>
</layer>
<layer id="174" name="L0173_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="175" name="L0174_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="80" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="363712" size="12800"/>
<biases offset="376512" size="320"/>
</blobs>
</layer>
<layer id="176" name="L0175_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="177" name="L0176_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="178" name="L0177_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="40" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="376832" size="12800"/>
<biases offset="389632" size="160"/>
</blobs>
</layer>
<layer id="179" name="L0178_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="180" name="L0179_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="3,3" group="40" kernel="3,3" output="40" pads_begin="3,3" pads_end="3,3" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="389792" size="1440"/>
<biases offset="391232" size="160"/>
</blobs>
</layer>
<layer id="181" name="L0180_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="182" name="L0181_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="80" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="391392" size="12800"/>
<biases offset="404192" size="320"/>
</blobs>
</layer>
<layer id="183" name="L0182_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="184" name="L0183_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="185" name="L0184_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="40" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="404512" size="12800"/>
<biases offset="417312" size="160"/>
</blobs>
</layer>
<layer id="186" name="L0185_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="187" name="L0186_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="4,4" group="40" kernel="3,3" output="40" pads_begin="4,4" pads_end="4,4" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="417472" size="1440"/>
<biases offset="418912" size="160"/>
</blobs>
</layer>
<layer id="188" name="L0187_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="189" name="L0188_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="80" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="419072" size="12800"/>
<biases offset="431872" size="320"/>
</blobs>
</layer>
<layer id="190" name="L0189_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="191" name="L0190_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="192" name="L0191_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="40" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="432192" size="12800"/>
<biases offset="444992" size="160"/>
</blobs>
</layer>
<layer id="193" name="L0192_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="194" name="L0193_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="40" kernel="3,3" output="40" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="445152" size="1440"/>
<biases offset="446592" size="160"/>
</blobs>
</layer>
<layer id="195" name="L0194_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="196" name="L0195_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="80" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="446752" size="12800"/>
<biases offset="459552" size="320"/>
</blobs>
</layer>
<layer id="197" name="L0196_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="198" name="L0197_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="199" name="L0198_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="40" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="459872" size="12800"/>
<biases offset="472672" size="160"/>
</blobs>
</layer>
<layer id="200" name="L0199_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="201" name="L0200_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="40" kernel="3,3" output="40" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="472832" size="1440"/>
<biases offset="474272" size="160"/>
</blobs>
</layer>
<layer id="202" name="L0201_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="203" name="L0202_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="80" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="474432" size="12800"/>
<biases offset="487232" size="320"/>
</blobs>
</layer>
<layer id="204" name="L0203_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="205" name="L0204_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="206" name="L0205_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="40" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="487552" size="12800"/>
<biases offset="500352" size="160"/>
</blobs>
</layer>
<layer id="207" name="L0206_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="208" name="L0207_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="2,2" group="40" kernel="3,3" output="40" pads_begin="2,2" pads_end="2,2" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="500512" size="1440"/>
<biases offset="501952" size="160"/>
</blobs>
</layer>
<layer id="209" name="L0208_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="210" name="L0209_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="80" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>40</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="502112" size="12800"/>
<biases offset="514912" size="320"/>
</blobs>
</layer>
<layer id="211" name="L0210_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="212" name="L0211_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="213" name="L0212_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="32" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="515232" size="10240"/>
<biases offset="525472" size="128"/>
</blobs>
</layer>
<layer id="214" name="L0213_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="215" name="L0214_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="4,4" group="32" kernel="3,3" output="32" pads_begin="4,4" pads_end="4,4" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="525600" size="1152"/>
<biases offset="526752" size="128"/>
</blobs>
</layer>
<layer id="216" name="L0215_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="217" name="L0216_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="64" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="526880" size="8192"/>
<biases offset="535072" size="256"/>
</blobs>
</layer>
<layer id="218" name="L0217_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="64" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>80</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="535328" size="20480"/>
<biases offset="555808" size="256"/>
</blobs>
</layer>
<layer id="219" name="L0218_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="220" name="L0219_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="221" name="L0220_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="32" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="556064" size="8192"/>
<biases offset="564256" size="128"/>
</blobs>
</layer>
<layer id="222" name="L0221_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="223" name="L0222_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="6,6" group="32" kernel="3,3" output="32" pads_begin="6,6" pads_end="6,6" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="564384" size="1152"/>
<biases offset="565536" size="128"/>
</blobs>
</layer>
<layer id="224" name="L0223_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="225" name="L0224_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="64" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="565664" size="8192"/>
<biases offset="573856" size="256"/>
</blobs>
</layer>
<layer id="226" name="L0225_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="227" name="L0226_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="228" name="L0227_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="32" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="574112" size="8192"/>
<biases offset="582304" size="128"/>
</blobs>
</layer>
<layer id="229" name="L0228_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="230" name="L0229_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="8,8" group="32" kernel="3,3" output="32" pads_begin="8,8" pads_end="8,8" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="582432" size="1152"/>
<biases offset="583584" size="128"/>
</blobs>
</layer>
<layer id="231" name="L0230_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="232" name="L0231_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="64" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="583712" size="8192"/>
<biases offset="591904" size="256"/>
</blobs>
</layer>
<layer id="233" name="L0232_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="234" name="L0233_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="235" name="L0234_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="32" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="592160" size="8192"/>
<biases offset="600352" size="128"/>
</blobs>
</layer>
<layer id="236" name="L0235_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="237" name="L0236_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="32" kernel="3,3" output="32" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="600480" size="1152"/>
<biases offset="601632" size="128"/>
</blobs>
</layer>
<layer id="238" name="L0237_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="239" name="L0238_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="56" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="601760" size="7168"/>
<biases offset="608928" size="224"/>
</blobs>
</layer>
<layer id="240" name="L0239_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="56" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>64</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="609152" size="14336"/>
<biases offset="623488" size="224"/>
</blobs>
</layer>
<layer id="241" name="L0240_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="242" name="L0241_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="243" name="L0242_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="32" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="623712" size="7168"/>
<biases offset="630880" size="128"/>
</blobs>
</layer>
<layer id="244" name="L0243_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="245" name="L0244_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="32" kernel="3,3" output="32" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="631008" size="1152"/>
<biases offset="632160" size="128"/>
</blobs>
</layer>
<layer id="246" name="L0245_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="247" name="L0246_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="56" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="632288" size="7168"/>
<biases offset="639456" size="224"/>
</blobs>
</layer>
<layer id="248" name="L0247_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="249" name="L0248_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="250" name="L0249_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="32" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="639680" size="7168"/>
<biases offset="646848" size="128"/>
</blobs>
</layer>
<layer id="251" name="L0250_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="252" name="L0251_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="2,2" group="32" kernel="3,3" output="32" pads_begin="2,2" pads_end="2,2" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="646976" size="1152"/>
<biases offset="648128" size="128"/>
</blobs>
</layer>
<layer id="253" name="L0252_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="254" name="L0253_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="56" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="648256" size="7168"/>
<biases offset="655424" size="224"/>
</blobs>
</layer>
<layer id="255" name="L0254_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="256" name="L0255_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="257" name="L0256_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="24" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="655648" size="5376"/>
<biases offset="661024" size="96"/>
</blobs>
</layer>
<layer id="258" name="L0257_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="259" name="L0258_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="4,4" group="24" kernel="3,3" output="24" pads_begin="4,4" pads_end="4,4" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="661120" size="864"/>
<biases offset="661984" size="96"/>
</blobs>
</layer>
<layer id="260" name="L0259_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="261" name="L0260_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="662080" size="4608"/>
<biases offset="666688" size="192"/>
</blobs>
</layer>
<layer id="262" name="L0261_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>56</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="666880" size="10752"/>
<biases offset="677632" size="192"/>
</blobs>
</layer>
<layer id="263" name="L0262_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="264" name="L0263_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="265" name="L0264_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="24" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="677824" size="4608"/>
<biases offset="682432" size="96"/>
</blobs>
</layer>
<layer id="266" name="L0265_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="267" name="L0266_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="6,6" group="24" kernel="3,3" output="24" pads_begin="6,6" pads_end="6,6" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="682528" size="864"/>
<biases offset="683392" size="96"/>
</blobs>
</layer>
<layer id="268" name="L0267_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="269" name="L0268_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="683488" size="4608"/>
<biases offset="688096" size="192"/>
</blobs>
</layer>
<layer id="270" name="L0269_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="271" name="L0270_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="272" name="L0271_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="24" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="688288" size="4608"/>
<biases offset="692896" size="96"/>
</blobs>
</layer>
<layer id="273" name="L0272_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="274" name="L0273_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="8,8" group="24" kernel="3,3" output="24" pads_begin="8,8" pads_end="8,8" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="692992" size="864"/>
<biases offset="693856" size="96"/>
</blobs>
</layer>
<layer id="275" name="L0274_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="276" name="L0275_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="693952" size="4608"/>
<biases offset="698560" size="192"/>
</blobs>
</layer>
<layer id="277" name="L0276_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="278" name="L0277_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="279" name="L0278_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="24" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="698752" size="4608"/>
<biases offset="703360" size="96"/>
</blobs>
</layer>
<layer id="280" name="L0279_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="281" name="L0280_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="24" kernel="3,3" output="24" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="703456" size="864"/>
<biases offset="704320" size="96"/>
</blobs>
</layer>
<layer id="282" name="L0281_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="283" name="L0282_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="704416" size="4608"/>
<biases offset="709024" size="192"/>
</blobs>
</layer>
<layer id="284" name="L0283_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="285" name="L0284_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="286" name="L0285_AvgPool2d" precision="FP32" type="Pooling">
<data exclude-pad="false" kernel="2,2" pads_begin="0,0" pads_end="0,0" pool-method="avg" rounding_type="ceil" strides="2,2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>32</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="287" name="L0286_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="16" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>32</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>32</dim>
<dim>56</dim>
</port>
</output>
<blobs>
<weights offset="709216" size="3072"/>
<biases offset="712288" size="64"/>
</blobs>
</layer>
<layer id="288" name="L0287_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>32</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>32</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="289" name="L0288_Upsample" precision="FP32" type="Interp">
<data align_corners="1" height="0" pad_beg="0" pad_end="0" shrink_factor="1" width="0" zoom_factor="2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>32</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="290" name="L0289_Conv2d" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="712352" size="3072"/>
<biases offset="715424" size="192"/>
</blobs>
</layer>
<layer id="291" name="L0290_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="292" name="L0291_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="293" name="L0292_AvgPool2d" precision="FP32" type="Pooling">
<data exclude-pad="false" kernel="4,4" pads_begin="0,0" pads_end="0,0" pool-method="avg" rounding_type="ceil" strides="4,4"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>16</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="294" name="L0293_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="16" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>16</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>16</dim>
<dim>28</dim>
</port>
</output>
<blobs>
<weights offset="715616" size="3072"/>
<biases offset="718688" size="64"/>
</blobs>
</layer>
<layer id="295" name="L0294_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>16</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>16</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="296" name="L0295_Upsample" precision="FP32" type="Interp">
<data align_corners="1" height="0" pad_beg="0" pad_end="0" shrink_factor="1" width="0" zoom_factor="4"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>16</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="297" name="L0296_Conv2d" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="48" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="718752" size="3072"/>
<biases offset="721824" size="192"/>
</blobs>
</layer>
<layer id="298" name="L0297_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="299" name="L0298_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="300" name="L0299_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="24" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
<blobs>
<weights offset="722016" size="4608"/>
<biases offset="726624" size="96"/>
</blobs>
</layer>
<layer id="301" name="L0300_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="302" name="L0301_Upsample" precision="FP32" type="Interp">
<data align_corners="1" height="0" pad_beg="0" pad_end="0" shrink_factor="1" width="0" zoom_factor="2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>64</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>24</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="303" name="L0302_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="24" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>48</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>24</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="726720" size="4608"/>
<biases offset="731328" size="96"/>
</blobs>
</layer>
<layer id="304" name="L0303_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>24</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="305" name="L0304_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>128</dim>
<dim>224</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>24</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>24</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="306" name="L0305_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="16" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>24</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
<blobs>
<weights offset="731424" size="1536"/>
<biases offset="732960" size="64"/>
</blobs>
</layer>
<layer id="307" name="L0306_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="308" name="L0307_Upsample" precision="FP32" type="Interp">
<data align_corners="1" height="0" pad_beg="0" pad_end="0" shrink_factor="1" width="0" zoom_factor="2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>128</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="309" name="L0308_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="16" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>32</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="733024" size="2048"/>
<biases offset="735072" size="64"/>
</blobs>
</layer>
<layer id="310" name="L0309_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="311" name="L0310_AddBackward1" precision="FP32" type="Eltwise">
<data coeff="" operation="sum"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="2">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="312" name="L0311_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="16" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="735136" size="1024"/>
<biases offset="736160" size="64"/>
</blobs>
</layer>
<layer id="313" name="L0312_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="314" name="L0313_Conv2d_BN" precision="FP32" type="Convolution">
<data dilations="1,1" group="16" kernel="3,3" output="16" pads_begin="1,1" pads_end="1,1" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="736224" size="576"/>
<biases offset="736800" size="64"/>
</blobs>
</layer>
<layer id="315" name="L0314_ReLU" precision="FP32" type="ReLU">
<data negative_slope="0.0"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
</layer>
<layer id="316" name="L0315_Conv2d" precision="FP32" type="Convolution">
<data dilations="1,1" group="1" kernel="1,1" output="4" pads_begin="0,0" pads_end="0,0" strides="1,1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="3">
<dim>1</dim>
<dim>4</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</output>
<blobs>
<weights offset="736864" size="256"/>
<biases offset="737120" size="16"/>
</blobs>
</layer>
<layer id="317" name="L0316_Upsample" precision="FP32" type="Interp">
<data align_corners="1" height="0" pad_beg="0" pad_end="0" shrink_factor="1" width="0" zoom_factor="2"/>
<input>
<port id="0">
<dim>1</dim>
<dim>4</dim>
<dim>256</dim>
<dim>448</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>4</dim>
<dim>512</dim>
<dim>896</dim>
</port>
</output>
</layer>
<layer id="318" name="L0317_ReWeight_SoftMax" precision="FP32" type="SoftMax">
<data axis="1"/>
<input>
<port id="0">
<dim>1</dim>
<dim>4</dim>
<dim>512</dim>
<dim>896</dim>
</port>
</input>
<output>
<port id="1">
<dim>1</dim>
<dim>4</dim>
<dim>512</dim>
<dim>896</dim>
</port>
</output>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="1" to-port="0"/>
<edge from-layer="1" from-port="3" to-layer="2" to-port="0"/>
<edge from-layer="2" from-port="1" to-layer="3" to-port="0"/>
<edge from-layer="3" from-port="3" to-layer="4" to-port="0"/>
<edge from-layer="4" from-port="1" to-layer="5" to-port="0"/>
<edge from-layer="5" from-port="3" to-layer="6" to-port="0"/>
<edge from-layer="6" from-port="1" to-layer="7" to-port="0"/>
<edge from-layer="7" from-port="3" to-layer="8" to-port="0"/>
<edge from-layer="2" from-port="1" to-layer="8" to-port="1"/>
<edge from-layer="8" from-port="2" to-layer="9" to-port="0"/>
<edge from-layer="9" from-port="1" to-layer="10" to-port="0"/>
<edge from-layer="10" from-port="3" to-layer="11" to-port="0"/>
<edge from-layer="11" from-port="1" to-layer="12" to-port="0"/>
<edge from-layer="12" from-port="3" to-layer="13" to-port="0"/>
<edge from-layer="13" from-port="1" to-layer="14" to-port="0"/>
<edge from-layer="9" from-port="1" to-layer="15" to-port="0"/>
<edge from-layer="14" from-port="3" to-layer="16" to-port="0"/>
<edge from-layer="15" from-port="3" to-layer="16" to-port="1"/>
<edge from-layer="16" from-port="2" to-layer="17" to-port="0"/>
<edge from-layer="17" from-port="1" to-layer="18" to-port="0"/>
<edge from-layer="18" from-port="3" to-layer="19" to-port="0"/>
<edge from-layer="19" from-port="1" to-layer="20" to-port="0"/>
<edge from-layer="20" from-port="3" to-layer="21" to-port="0"/>
<edge from-layer="21" from-port="1" to-layer="22" to-port="0"/>
<edge from-layer="22" from-port="3" to-layer="23" to-port="0"/>
<edge from-layer="17" from-port="1" to-layer="23" to-port="1"/>
<edge from-layer="23" from-port="2" to-layer="24" to-port="0"/>
<edge from-layer="24" from-port="1" to-layer="25" to-port="0"/>
<edge from-layer="25" from-port="3" to-layer="26" to-port="0"/>
<edge from-layer="26" from-port="1" to-layer="27" to-port="0"/>
<edge from-layer="27" from-port="3" to-layer="28" to-port="0"/>
<edge from-layer="28" from-port="1" to-layer="29" to-port="0"/>
<edge from-layer="24" from-port="1" to-layer="30" to-port="0"/>
<edge from-layer="29" from-port="3" to-layer="31" to-port="0"/>
<edge from-layer="30" from-port="3" to-layer="31" to-port="1"/>
<edge from-layer="31" from-port="2" to-layer="32" to-port="0"/>
<edge from-layer="32" from-port="1" to-layer="33" to-port="0"/>
<edge from-layer="33" from-port="3" to-layer="34" to-port="0"/>
<edge from-layer="34" from-port="1" to-layer="35" to-port="0"/>
<edge from-layer="35" from-port="3" to-layer="36" to-port="0"/>
<edge from-layer="36" from-port="1" to-layer="37" to-port="0"/>
<edge from-layer="37" from-port="3" to-layer="38" to-port="0"/>
<edge from-layer="32" from-port="1" to-layer="38" to-port="1"/>
<edge from-layer="38" from-port="2" to-layer="39" to-port="0"/>
<edge from-layer="39" from-port="1" to-layer="40" to-port="0"/>
<edge from-layer="40" from-port="3" to-layer="41" to-port="0"/>
<edge from-layer="41" from-port="1" to-layer="42" to-port="0"/>
<edge from-layer="42" from-port="3" to-layer="43" to-port="0"/>
<edge from-layer="43" from-port="1" to-layer="44" to-port="0"/>
<edge from-layer="39" from-port="1" to-layer="45" to-port="0"/>
<edge from-layer="45" from-port="1" to-layer="46" to-port="0"/>
<edge from-layer="44" from-port="3" to-layer="47" to-port="0"/>
<edge from-layer="46" from-port="3" to-layer="47" to-port="1"/>
<edge from-layer="47" from-port="2" to-layer="48" to-port="0"/>
<edge from-layer="48" from-port="1" to-layer="49" to-port="0"/>
<edge from-layer="49" from-port="3" to-layer="50" to-port="0"/>
<edge from-layer="50" from-port="1" to-layer="51" to-port="0"/>
<edge from-layer="51" from-port="3" to-layer="52" to-port="0"/>
<edge from-layer="52" from-port="1" to-layer="53" to-port="0"/>
<edge from-layer="53" from-port="3" to-layer="54" to-port="0"/>
<edge from-layer="48" from-port="1" to-layer="54" to-port="1"/>
<edge from-layer="54" from-port="2" to-layer="55" to-port="0"/>
<edge from-layer="55" from-port="1" to-layer="56" to-port="0"/>
<edge from-layer="56" from-port="3" to-layer="57" to-port="0"/>
<edge from-layer="57" from-port="1" to-layer="58" to-port="0"/>
<edge from-layer="58" from-port="3" to-layer="59" to-port="0"/>
<edge from-layer="59" from-port="1" to-layer="60" to-port="0"/>
<edge from-layer="60" from-port="3" to-layer="61" to-port="0"/>
<edge from-layer="55" from-port="1" to-layer="61" to-port="1"/>
<edge from-layer="61" from-port="2" to-layer="62" to-port="0"/>
<edge from-layer="62" from-port="1" to-layer="63" to-port="0"/>
<edge from-layer="63" from-port="3" to-layer="64" to-port="0"/>
<edge from-layer="64" from-port="1" to-layer="65" to-port="0"/>
<edge from-layer="65" from-port="3" to-layer="66" to-port="0"/>
<edge from-layer="66" from-port="1" to-layer="67" to-port="0"/>
<edge from-layer="67" from-port="3" to-layer="68" to-port="0"/>
<edge from-layer="62" from-port="1" to-layer="68" to-port="1"/>
<edge from-layer="68" from-port="2" to-layer="69" to-port="0"/>
<edge from-layer="69" from-port="1" to-layer="70" to-port="0"/>
<edge from-layer="70" from-port="3" to-layer="71" to-port="0"/>
<edge from-layer="71" from-port="1" to-layer="72" to-port="0"/>
<edge from-layer="72" from-port="3" to-layer="73" to-port="0"/>
<edge from-layer="73" from-port="1" to-layer="74" to-port="0"/>
<edge from-layer="74" from-port="3" to-layer="75" to-port="0"/>
<edge from-layer="69" from-port="1" to-layer="75" to-port="1"/>
<edge from-layer="75" from-port="2" to-layer="76" to-port="0"/>
<edge from-layer="76" from-port="1" to-layer="77" to-port="0"/>
<edge from-layer="77" from-port="3" to-layer="78" to-port="0"/>
<edge from-layer="78" from-port="1" to-layer="79" to-port="0"/>
<edge from-layer="79" from-port="3" to-layer="80" to-port="0"/>
<edge from-layer="80" from-port="1" to-layer="81" to-port="0"/>
<edge from-layer="81" from-port="3" to-layer="82" to-port="0"/>
<edge from-layer="76" from-port="1" to-layer="82" to-port="1"/>
<edge from-layer="82" from-port="2" to-layer="83" to-port="0"/>
<edge from-layer="83" from-port="1" to-layer="84" to-port="0"/>
<edge from-layer="84" from-port="3" to-layer="85" to-port="0"/>
<edge from-layer="85" from-port="1" to-layer="86" to-port="0"/>
<edge from-layer="86" from-port="3" to-layer="87" to-port="0"/>
<edge from-layer="87" from-port="1" to-layer="88" to-port="0"/>
<edge from-layer="88" from-port="3" to-layer="89" to-port="0"/>
<edge from-layer="83" from-port="1" to-layer="89" to-port="1"/>
<edge from-layer="89" from-port="2" to-layer="90" to-port="0"/>
<edge from-layer="90" from-port="1" to-layer="91" to-port="0"/>
<edge from-layer="91" from-port="3" to-layer="92" to-port="0"/>
<edge from-layer="92" from-port="1" to-layer="93" to-port="0"/>
<edge from-layer="93" from-port="3" to-layer="94" to-port="0"/>
<edge from-layer="94" from-port="1" to-layer="95" to-port="0"/>
<edge from-layer="95" from-port="3" to-layer="96" to-port="0"/>
<edge from-layer="90" from-port="1" to-layer="96" to-port="1"/>
<edge from-layer="96" from-port="2" to-layer="97" to-port="0"/>
<edge from-layer="97" from-port="1" to-layer="98" to-port="0"/>
<edge from-layer="98" from-port="3" to-layer="99" to-port="0"/>
<edge from-layer="99" from-port="1" to-layer="100" to-port="0"/>
<edge from-layer="100" from-port="3" to-layer="101" to-port="0"/>
<edge from-layer="101" from-port="1" to-layer="102" to-port="0"/>
<edge from-layer="102" from-port="3" to-layer="103" to-port="0"/>
<edge from-layer="97" from-port="1" to-layer="103" to-port="1"/>
<edge from-layer="103" from-port="2" to-layer="104" to-port="0"/>
<edge from-layer="104" from-port="1" to-layer="105" to-port="0"/>
<edge from-layer="105" from-port="3" to-layer="106" to-port="0"/>
<edge from-layer="106" from-port="1" to-layer="107" to-port="0"/>
<edge from-layer="107" from-port="3" to-layer="108" to-port="0"/>
<edge from-layer="108" from-port="1" to-layer="109" to-port="0"/>
<edge from-layer="104" from-port="1" to-layer="110" to-port="0"/>
<edge from-layer="110" from-port="1" to-layer="111" to-port="0"/>
<edge from-layer="109" from-port="3" to-layer="112" to-port="0"/>
<edge from-layer="111" from-port="3" to-layer="112" to-port="1"/>
<edge from-layer="112" from-port="2" to-layer="113" to-port="0"/>
<edge from-layer="113" from-port="1" to-layer="114" to-port="0"/>
<edge from-layer="114" from-port="3" to-layer="115" to-port="0"/>
<edge from-layer="115" from-port="1" to-layer="116" to-port="0"/>
<edge from-layer="116" from-port="3" to-layer="117" to-port="0"/>
<edge from-layer="117" from-port="1" to-layer="118" to-port="0"/>
<edge from-layer="118" from-port="3" to-layer="119" to-port="0"/>
<edge from-layer="113" from-port="1" to-layer="119" to-port="1"/>
<edge from-layer="119" from-port="2" to-layer="120" to-port="0"/>
<edge from-layer="120" from-port="1" to-layer="121" to-port="0"/>
<edge from-layer="121" from-port="3" to-layer="122" to-port="0"/>
<edge from-layer="122" from-port="1" to-layer="123" to-port="0"/>
<edge from-layer="123" from-port="3" to-layer="124" to-port="0"/>
<edge from-layer="124" from-port="1" to-layer="125" to-port="0"/>
<edge from-layer="125" from-port="3" to-layer="126" to-port="0"/>
<edge from-layer="120" from-port="1" to-layer="126" to-port="1"/>
<edge from-layer="126" from-port="2" to-layer="127" to-port="0"/>
<edge from-layer="127" from-port="1" to-layer="128" to-port="0"/>
<edge from-layer="128" from-port="3" to-layer="129" to-port="0"/>
<edge from-layer="129" from-port="1" to-layer="130" to-port="0"/>
<edge from-layer="130" from-port="3" to-layer="131" to-port="0"/>
<edge from-layer="131" from-port="1" to-layer="132" to-port="0"/>
<edge from-layer="132" from-port="3" to-layer="133" to-port="0"/>
<edge from-layer="127" from-port="1" to-layer="133" to-port="1"/>
<edge from-layer="133" from-port="2" to-layer="134" to-port="0"/>
<edge from-layer="134" from-port="1" to-layer="135" to-port="0"/>
<edge from-layer="135" from-port="3" to-layer="136" to-port="0"/>
<edge from-layer="136" from-port="1" to-layer="137" to-port="0"/>
<edge from-layer="137" from-port="3" to-layer="138" to-port="0"/>
<edge from-layer="138" from-port="1" to-layer="139" to-port="0"/>
<edge from-layer="134" from-port="1" to-layer="140" to-port="0"/>
<edge from-layer="139" from-port="3" to-layer="141" to-port="0"/>
<edge from-layer="140" from-port="3" to-layer="141" to-port="1"/>
<edge from-layer="141" from-port="2" to-layer="142" to-port="0"/>
<edge from-layer="142" from-port="1" to-layer="143" to-port="0"/>
<edge from-layer="143" from-port="3" to-layer="144" to-port="0"/>
<edge from-layer="144" from-port="1" to-layer="145" to-port="0"/>
<edge from-layer="145" from-port="3" to-layer="146" to-port="0"/>
<edge from-layer="146" from-port="1" to-layer="147" to-port="0"/>
<edge from-layer="147" from-port="3" to-layer="148" to-port="0"/>
<edge from-layer="142" from-port="1" to-layer="148" to-port="1"/>
<edge from-layer="148" from-port="2" to-layer="149" to-port="0"/>
<edge from-layer="149" from-port="1" to-layer="150" to-port="0"/>
<edge from-layer="150" from-port="3" to-layer="151" to-port="0"/>
<edge from-layer="151" from-port="1" to-layer="152" to-port="0"/>
<edge from-layer="152" from-port="3" to-layer="153" to-port="0"/>
<edge from-layer="153" from-port="1" to-layer="154" to-port="0"/>
<edge from-layer="154" from-port="3" to-layer="155" to-port="0"/>
<edge from-layer="149" from-port="1" to-layer="155" to-port="1"/>
<edge from-layer="155" from-port="2" to-layer="156" to-port="0"/>
<edge from-layer="156" from-port="1" to-layer="157" to-port="0"/>
<edge from-layer="157" from-port="3" to-layer="158" to-port="0"/>
<edge from-layer="158" from-port="1" to-layer="159" to-port="0"/>
<edge from-layer="159" from-port="3" to-layer="160" to-port="0"/>
<edge from-layer="160" from-port="1" to-layer="161" to-port="0"/>
<edge from-layer="161" from-port="3" to-layer="162" to-port="0"/>
<edge from-layer="156" from-port="1" to-layer="162" to-port="1"/>
<edge from-layer="162" from-port="2" to-layer="163" to-port="0"/>
<edge from-layer="163" from-port="1" to-layer="164" to-port="0"/>
<edge from-layer="164" from-port="3" to-layer="165" to-port="0"/>
<edge from-layer="165" from-port="1" to-layer="166" to-port="0"/>
<edge from-layer="166" from-port="3" to-layer="167" to-port="0"/>
<edge from-layer="167" from-port="1" to-layer="168" to-port="0"/>
<edge from-layer="168" from-port="3" to-layer="169" to-port="0"/>
<edge from-layer="163" from-port="1" to-layer="169" to-port="1"/>
<edge from-layer="169" from-port="2" to-layer="170" to-port="0"/>
<edge from-layer="170" from-port="1" to-layer="171" to-port="0"/>
<edge from-layer="171" from-port="3" to-layer="172" to-port="0"/>
<edge from-layer="172" from-port="1" to-layer="173" to-port="0"/>
<edge from-layer="173" from-port="3" to-layer="174" to-port="0"/>
<edge from-layer="174" from-port="1" to-layer="175" to-port="0"/>
<edge from-layer="175" from-port="3" to-layer="176" to-port="0"/>
<edge from-layer="170" from-port="1" to-layer="176" to-port="1"/>
<edge from-layer="176" from-port="2" to-layer="177" to-port="0"/>
<edge from-layer="177" from-port="1" to-layer="178" to-port="0"/>
<edge from-layer="178" from-port="3" to-layer="179" to-port="0"/>
<edge from-layer="179" from-port="1" to-layer="180" to-port="0"/>
<edge from-layer="180" from-port="3" to-layer="181" to-port="0"/>
<edge from-layer="181" from-port="1" to-layer="182" to-port="0"/>
<edge from-layer="182" from-port="3" to-layer="183" to-port="0"/>
<edge from-layer="177" from-port="1" to-layer="183" to-port="1"/>
<edge from-layer="183" from-port="2" to-layer="184" to-port="0"/>
<edge from-layer="184" from-port="1" to-layer="185" to-port="0"/>
<edge from-layer="185" from-port="3" to-layer="186" to-port="0"/>
<edge from-layer="186" from-port="1" to-layer="187" to-port="0"/>
<edge from-layer="187" from-port="3" to-layer="188" to-port="0"/>
<edge from-layer="188" from-port="1" to-layer="189" to-port="0"/>
<edge from-layer="189" from-port="3" to-layer="190" to-port="0"/>
<edge from-layer="184" from-port="1" to-layer="190" to-port="1"/>
<edge from-layer="190" from-port="2" to-layer="191" to-port="0"/>
<edge from-layer="191" from-port="1" to-layer="192" to-port="0"/>
<edge from-layer="192" from-port="3" to-layer="193" to-port="0"/>
<edge from-layer="193" from-port="1" to-layer="194" to-port="0"/>
<edge from-layer="194" from-port="3" to-layer="195" to-port="0"/>
<edge from-layer="195" from-port="1" to-layer="196" to-port="0"/>
<edge from-layer="196" from-port="3" to-layer="197" to-port="0"/>
<edge from-layer="191" from-port="1" to-layer="197" to-port="1"/>
<edge from-layer="197" from-port="2" to-layer="198" to-port="0"/>
<edge from-layer="198" from-port="1" to-layer="199" to-port="0"/>
<edge from-layer="199" from-port="3" to-layer="200" to-port="0"/>
<edge from-layer="200" from-port="1" to-layer="201" to-port="0"/>
<edge from-layer="201" from-port="3" to-layer="202" to-port="0"/>
<edge from-layer="202" from-port="1" to-layer="203" to-port="0"/>
<edge from-layer="203" from-port="3" to-layer="204" to-port="0"/>
<edge from-layer="198" from-port="1" to-layer="204" to-port="1"/>
<edge from-layer="204" from-port="2" to-layer="205" to-port="0"/>
<edge from-layer="205" from-port="1" to-layer="206" to-port="0"/>
<edge from-layer="206" from-port="3" to-layer="207" to-port="0"/>
<edge from-layer="207" from-port="1" to-layer="208" to-port="0"/>
<edge from-layer="208" from-port="3" to-layer="209" to-port="0"/>
<edge from-layer="209" from-port="1" to-layer="210" to-port="0"/>
<edge from-layer="210" from-port="3" to-layer="211" to-port="0"/>
<edge from-layer="205" from-port="1" to-layer="211" to-port="1"/>
<edge from-layer="211" from-port="2" to-layer="212" to-port="0"/>
<edge from-layer="212" from-port="1" to-layer="213" to-port="0"/>
<edge from-layer="213" from-port="3" to-layer="214" to-port="0"/>
<edge from-layer="214" from-port="1" to-layer="215" to-port="0"/>
<edge from-layer="215" from-port="3" to-layer="216" to-port="0"/>
<edge from-layer="216" from-port="1" to-layer="217" to-port="0"/>
<edge from-layer="212" from-port="1" to-layer="218" to-port="0"/>
<edge from-layer="217" from-port="3" to-layer="219" to-port="0"/>
<edge from-layer="218" from-port="3" to-layer="219" to-port="1"/>
<edge from-layer="219" from-port="2" to-layer="220" to-port="0"/>
<edge from-layer="220" from-port="1" to-layer="221" to-port="0"/>
<edge from-layer="221" from-port="3" to-layer="222" to-port="0"/>
<edge from-layer="222" from-port="1" to-layer="223" to-port="0"/>
<edge from-layer="223" from-port="3" to-layer="224" to-port="0"/>
<edge from-layer="224" from-port="1" to-layer="225" to-port="0"/>
<edge from-layer="225" from-port="3" to-layer="226" to-port="0"/>
<edge from-layer="220" from-port="1" to-layer="226" to-port="1"/>
<edge from-layer="226" from-port="2" to-layer="227" to-port="0"/>
<edge from-layer="227" from-port="1" to-layer="228" to-port="0"/>
<edge from-layer="228" from-port="3" to-layer="229" to-port="0"/>
<edge from-layer="229" from-port="1" to-layer="230" to-port="0"/>
<edge from-layer="230" from-port="3" to-layer="231" to-port="0"/>
<edge from-layer="231" from-port="1" to-layer="232" to-port="0"/>
<edge from-layer="232" from-port="3" to-layer="233" to-port="0"/>
<edge from-layer="227" from-port="1" to-layer="233" to-port="1"/>
<edge from-layer="233" from-port="2" to-layer="234" to-port="0"/>
<edge from-layer="234" from-port="1" to-layer="235" to-port="0"/>
<edge from-layer="235" from-port="3" to-layer="236" to-port="0"/>
<edge from-layer="236" from-port="1" to-layer="237" to-port="0"/>
<edge from-layer="237" from-port="3" to-layer="238" to-port="0"/>
<edge from-layer="238" from-port="1" to-layer="239" to-port="0"/>
<edge from-layer="234" from-port="1" to-layer="240" to-port="0"/>
<edge from-layer="239" from-port="3" to-layer="241" to-port="0"/>
<edge from-layer="240" from-port="3" to-layer="241" to-port="1"/>
<edge from-layer="241" from-port="2" to-layer="242" to-port="0"/>
<edge from-layer="242" from-port="1" to-layer="243" to-port="0"/>
<edge from-layer="243" from-port="3" to-layer="244" to-port="0"/>
<edge from-layer="244" from-port="1" to-layer="245" to-port="0"/>
<edge from-layer="245" from-port="3" to-layer="246" to-port="0"/>
<edge from-layer="246" from-port="1" to-layer="247" to-port="0"/>
<edge from-layer="247" from-port="3" to-layer="248" to-port="0"/>
<edge from-layer="242" from-port="1" to-layer="248" to-port="1"/>
<edge from-layer="248" from-port="2" to-layer="249" to-port="0"/>
<edge from-layer="249" from-port="1" to-layer="250" to-port="0"/>
<edge from-layer="250" from-port="3" to-layer="251" to-port="0"/>
<edge from-layer="251" from-port="1" to-layer="252" to-port="0"/>
<edge from-layer="252" from-port="3" to-layer="253" to-port="0"/>
<edge from-layer="253" from-port="1" to-layer="254" to-port="0"/>
<edge from-layer="254" from-port="3" to-layer="255" to-port="0"/>
<edge from-layer="249" from-port="1" to-layer="255" to-port="1"/>
<edge from-layer="255" from-port="2" to-layer="256" to-port="0"/>
<edge from-layer="256" from-port="1" to-layer="257" to-port="0"/>
<edge from-layer="257" from-port="3" to-layer="258" to-port="0"/>
<edge from-layer="258" from-port="1" to-layer="259" to-port="0"/>
<edge from-layer="259" from-port="3" to-layer="260" to-port="0"/>
<edge from-layer="260" from-port="1" to-layer="261" to-port="0"/>
<edge from-layer="256" from-port="1" to-layer="262" to-port="0"/>
<edge from-layer="261" from-port="3" to-layer="263" to-port="0"/>
<edge from-layer="262" from-port="3" to-layer="263" to-port="1"/>
<edge from-layer="263" from-port="2" to-layer="264" to-port="0"/>
<edge from-layer="264" from-port="1" to-layer="265" to-port="0"/>
<edge from-layer="265" from-port="3" to-layer="266" to-port="0"/>
<edge from-layer="266" from-port="1" to-layer="267" to-port="0"/>
<edge from-layer="267" from-port="3" to-layer="268" to-port="0"/>
<edge from-layer="268" from-port="1" to-layer="269" to-port="0"/>
<edge from-layer="269" from-port="3" to-layer="270" to-port="0"/>
<edge from-layer="264" from-port="1" to-layer="270" to-port="1"/>
<edge from-layer="270" from-port="2" to-layer="271" to-port="0"/>
<edge from-layer="271" from-port="1" to-layer="272" to-port="0"/>
<edge from-layer="272" from-port="3" to-layer="273" to-port="0"/>
<edge from-layer="273" from-port="1" to-layer="274" to-port="0"/>
<edge from-layer="274" from-port="3" to-layer="275" to-port="0"/>
<edge from-layer="275" from-port="1" to-layer="276" to-port="0"/>
<edge from-layer="276" from-port="3" to-layer="277" to-port="0"/>
<edge from-layer="271" from-port="1" to-layer="277" to-port="1"/>
<edge from-layer="277" from-port="2" to-layer="278" to-port="0"/>
<edge from-layer="278" from-port="1" to-layer="279" to-port="0"/>
<edge from-layer="279" from-port="3" to-layer="280" to-port="0"/>
<edge from-layer="280" from-port="1" to-layer="281" to-port="0"/>
<edge from-layer="281" from-port="3" to-layer="282" to-port="0"/>
<edge from-layer="282" from-port="1" to-layer="283" to-port="0"/>
<edge from-layer="283" from-port="3" to-layer="284" to-port="0"/>
<edge from-layer="278" from-port="1" to-layer="284" to-port="1"/>
<edge from-layer="284" from-port="2" to-layer="285" to-port="0"/>
<edge from-layer="285" from-port="1" to-layer="286" to-port="0"/>
<edge from-layer="286" from-port="1" to-layer="287" to-port="0"/>
<edge from-layer="287" from-port="3" to-layer="288" to-port="0"/>
<edge from-layer="288" from-port="1" to-layer="289" to-port="0"/>
<edge from-layer="289" from-port="1" to-layer="290" to-port="0"/>
<edge from-layer="290" from-port="3" to-layer="291" to-port="0"/>
<edge from-layer="285" from-port="1" to-layer="292" to-port="0"/>
<edge from-layer="291" from-port="1" to-layer="292" to-port="1"/>
<edge from-layer="285" from-port="1" to-layer="293" to-port="0"/>
<edge from-layer="293" from-port="1" to-layer="294" to-port="0"/>
<edge from-layer="294" from-port="3" to-layer="295" to-port="0"/>
<edge from-layer="295" from-port="1" to-layer="296" to-port="0"/>
<edge from-layer="296" from-port="1" to-layer="297" to-port="0"/>
<edge from-layer="297" from-port="3" to-layer="298" to-port="0"/>
<edge from-layer="292" from-port="2" to-layer="299" to-port="0"/>
<edge from-layer="298" from-port="1" to-layer="299" to-port="1"/>
<edge from-layer="299" from-port="2" to-layer="300" to-port="0"/>
<edge from-layer="300" from-port="3" to-layer="301" to-port="0"/>
<edge from-layer="301" from-port="1" to-layer="302" to-port="0"/>
<edge from-layer="104" from-port="1" to-layer="303" to-port="0"/>
<edge from-layer="303" from-port="3" to-layer="304" to-port="0"/>
<edge from-layer="302" from-port="1" to-layer="305" to-port="0"/>
<edge from-layer="304" from-port="1" to-layer="305" to-port="1"/>
<edge from-layer="305" from-port="2" to-layer="306" to-port="0"/>
<edge from-layer="306" from-port="3" to-layer="307" to-port="0"/>
<edge from-layer="307" from-port="1" to-layer="308" to-port="0"/>
<edge from-layer="39" from-port="1" to-layer="309" to-port="0"/>
<edge from-layer="309" from-port="3" to-layer="310" to-port="0"/>
<edge from-layer="308" from-port="1" to-layer="311" to-port="0"/>
<edge from-layer="310" from-port="1" to-layer="311" to-port="1"/>
<edge from-layer="311" from-port="2" to-layer="312" to-port="0"/>
<edge from-layer="312" from-port="3" to-layer="313" to-port="0"/>
<edge from-layer="313" from-port="1" to-layer="314" to-port="0"/>
<edge from-layer="314" from-port="3" to-layer="315" to-port="0"/>
<edge from-layer="315" from-port="1" to-layer="316" to-port="0"/>
<edge from-layer="316" from-port="3" to-layer="317" to-port="0"/>
<edge from-layer="317" from-port="1" to-layer="318" to-port="0"/>
</edges>
<meta_data>
<MO_version value="2019.1.0-341-gc9b66a2"/>
<cli_parameters>
<data_type value="FP32"/>
<disable_fusing value="False"/>
<disable_gfusing value="False"/>
<disable_nhwc_to_nchw value="False"/>
<disable_omitting_optional value="False"/>
<disable_resnet_optimization value="False"/>
<enable_concat_optimization value="False"/>
<enable_flattening_nested_params value="False"/>
<extensions value="DIR"/>
<framework value="caffe"/>
<generate_deprecated_IR_V2 value="False"/>
<input value="data"/>
<input_model value="DIR/model.caffemodel"/>
<input_model_is_text value="False"/>
<input_proto value="DIR/model.prototxt"/>
<input_shape value="[1,3,512,896]"/>
<k value="DIR/CustomLayersMapping.xml"/>
<keep_shape_ops value="False"/>
<legacy_mxnet_model value="False"/>
<log_level value="ERROR"/>
<mean_scale_values value="{}"/>
<mean_values value="()"/>
<model_name value="road-segmentation-adas-0001"/>
<move_to_preprocess value="False"/>
<output value="['L0317_ReWeight_SoftMax']"/>
<output_dir value="DIR"/>
<placeholder_shapes value="{'data': array([ 1, 3, 512, 896])}"/>
<remove_output_softmax value="False"/>
<reverse_input_channels value="False"/>
<save_params_from_nd value="False"/>
<scale_values value="()"/>
<silent value="False"/>
<version value="False"/>
<unset unset_cli_parameters="batch, counts, finegrain_fusing, freeze_placeholder_with_value, input_checkpoint, input_meta_graph, input_symbol, mean_file, mean_file_offsets, nd_prefix_name, pretrained_model_name, saved_model_dir, saved_model_tags, scale, tensorboard_logdir, tensorflow_custom_layer_libraries, tensorflow_custom_operations_config_update, tensorflow_object_detection_api_pipeline_config, tensorflow_operation_patterns, tensorflow_subgraph_patterns, tensorflow_use_custom_operations_config"/>
</cli_parameters>
</meta_data>
</net>
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C++
1
https://gitee.com/helu2007/GOMfcTemplate2.git
git@gitee.com:helu2007/GOMfcTemplate2.git
helu2007
GOMfcTemplate2
GOMfcTemplate2
master

搜索帮助