代码拉取完成,页面将自动刷新
import torch
from torch import nn
import torchvision
from torch.nn import functional as F
from torch.utils import data
from matplotlib import pyplot as plt
from torchvision import transforms
class CenterLoss(nn.Module):
def __init__(self, cls_num, feat_num):
super().__init__()
self.cls_num = cls_num
# 中心点定为模型参数(初始值为随机数)
self.center = nn.Parameter(torch.randn(cls_num, feat_num))
def forward(self, _x, _y, lamda):
center_exp = self.center.index_select(dim=0, index=_y.long())
count = torch.histc(_y.float(), bins=self.cls_num, min=0, max=self.cls_num - 1)
count_exp = count.index_select(dim=0, index=_y.long())
# return lamda / 2 * torch.mean(torch.div(torch.sqrt(
# torch.sum(torch.pow(_x - center_exp, 2), dim=1)), count_exp))
return lamda / 2 * torch.mean(torch.div(torch.sum(torch.pow((_x - center_exp), 2), dim=1), count_exp))
class ConvLayer(nn.Module):
def __init__(self, in_c, out_c, k, s, p, bias=False):
super().__init__()
self.cnn_layer = nn.Sequential(
nn.Conv2d(in_c, out_c, k, s, p, bias=bias),
nn.BatchNorm2d(out_c),
nn.ReLU()
)
def forward(self, _x):
return self.cnn_layer(_x)
class MainNet(nn.Module):
def __init__(self):
super().__init__()
self.hidden_layer = nn.Sequential(
# ConvLayer(1, 32, 5, 1, 2),
ConvLayer(3, 32, 5, 1, 2),
ConvLayer(32, 64, 5, 1, 2),
nn.MaxPool2d(2, 2),
ConvLayer(64, 128, 5, 1, 2),
ConvLayer(128, 256, 5, 1, 2),
nn.MaxPool2d(2, 2),
ConvLayer(256, 512, 5, 1, 2),
ConvLayer(512, 512, 5, 1, 2),
nn.MaxPool2d(2, 2),
ConvLayer(512, 256, 5, 1, 2),
ConvLayer(256, 128, 5, 1, 2),
ConvLayer(128, 64, 5, 1, 2),
nn.MaxPool2d(2, 2)
)
self.fc = nn.Sequential(
# nn.Linear(64, 2)
nn.Linear(64 * 2 * 2, 2)
)
self.output_layer = nn.Sequential(
# nn.Linear(2, 10)
nn.Linear(2, 100)
)
def forward(self, _x):
outs = self.hidden_layer(_x)
# outs = outs.reshape(-1, 64)
outs = outs.reshape(-1, 64 * 2 * 2)
feature = self.fc(outs)
# outs = torch.log_softmax(self.output_layer(feature), dim=1)
outs = self.output_layer(feature)
return feature, outs
def visualize(feats, labels, epoch):
# plt.ion()
plt.clf()
color = [
'#DF0029', '#EC870E', '#FCF54C', '#83C75D', '#00B2BF',
'#426EB4', '#8273B0', '#AF4A92', '#898989', '#555555',
'#DF0029', '#EC870E', '#FCF54C', '#83C75D', '#00B2BF',
'#426EB4', '#8273B0', '#AF4A92', '#898989', '#555555',
'#DF0029', '#EC870E', '#FCF54C', '#83C75D', '#00B2BF',
'#426EB4', '#8273B0', '#AF4A92', '#898989', '#555555',
'#DF0029', '#EC870E', '#FCF54C', '#83C75D', '#00B2BF',
'#426EB4', '#8273B0', '#AF4A92', '#898989', '#555555',
'#DF0029', '#EC870E', '#FCF54C', '#83C75D', '#00B2BF',
'#426EB4', '#8273B0', '#AF4A92', '#898989', '#555555',
'#DF0029', '#EC870E', '#FCF54C', '#83C75D', '#00B2BF',
'#426EB4', '#8273B0', '#AF4A92', '#898989', '#555555',
'#DF0029', '#EC870E', '#FCF54C', '#83C75D', '#00B2BF',
'#426EB4', '#8273B0', '#AF4A92', '#898989', '#555555',
'#DF0029', '#EC870E', '#FCF54C', '#83C75D', '#00B2BF',
'#426EB4', '#8273B0', '#AF4A92', '#898989', '#555555',
'#DF0029', '#EC870E', '#FCF54C', '#83C75D', '#00B2BF',
'#426EB4', '#8273B0', '#AF4A92', '#898989', '#555555',
'#DF0029', '#EC870E', '#FCF54C', '#83C75D', '#00B2BF',
'#426EB4', '#8273B0', '#AF4A92', '#898989', '#555555'
]
for i in range(100):
plt.plot(feats[labels == i, 0], feats[labels == i, 1], '.', c=color[i])
plt.legend([
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'10', '11', '12', '13', '14', '15', '16', '17', '18', '19',
'20', '21', '22', '23', '24', '25', '26', '27', '28', '29',
'30', '31', '32', '33', '34', '35', '36', '37', '38', '39',
'40', '41', '42', '43', '44', '45', '46', '47', '48', '49',
'50', '51', '52', '53', '54', '55', '56', '57', '58', '59',
'60', '61', '62', '63', '64', '65', '66', '67', '68', '69',
'70', '71', '72', '73', '74', '75', '76', '77', '78', '79',
'80', '81', '82', '83', '84', '85', '86', '87', '88', '89',
'90', '91', '92', '93', '94', '95', '96', '97', '98', '99',
], loc='upper right')
plt.title('epoch=%d' % epoch)
plt.savefig('img4/epoch=%d.jpg' % epoch)
# plt.pause(0.001)
# plt.ioff()
if __name__ == '__main__':
# 测试
# loss_fn = CenterLoss(5, 2)
# feat = torch.randn(5, 2, dtype=torch.float32)
# y_list = torch.tensor([0, 0, 1, 0, 1], dtype=torch.float32)
# loss = loss_fn(feat, y_list, 1)
# print(loss)
# tensor(0.2911, grad_fn=<MulBackward0>)
# net = MainNet()
# x = torch.randn(1, 1, 28, 28)
# _out = net(x)
# print(_out.shape)
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# train_data = torchvision.datasets.MNIST(root=r'E:\pythonProject\datasets\mnist',
# download=True, train=True, transform=transforms.ToTensor())
# cifar10_data = torchvision.datasets.CIFAR10(root=r'E:\pythonProject\datasets',
# download=True, train=True, transform=transforms.ToTensor())
cifar100_data = torchvision.datasets.CIFAR100(root=r'E:\pythonProject\datasets',
download=True, train=True, transform=transforms.ToTensor())
data_loader = data.DataLoader(dataset=cifar100_data, shuffle=True, batch_size=256)
net = MainNet().to(device=DEVICE)
loss_fc = nn.CrossEntropyLoss()
# center_loss_fn = CenterLoss(10, 2).to(device=DEVICE)
center_loss_fn = CenterLoss(100, 2).to(device=DEVICE)
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 20, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.5)
epoch = 0
while True:
feat_loader = []
label_loader = []
for i, (x, y) in enumerate(data_loader):
x = x.to(DEVICE)
y = y.to(DEVICE)
feat, out = net(x)
loss = loss_fc(out, y)
center_loss = center_loss_fn(feat, y, 1)
loss += center_loss
net_opt.zero_grad()
c_l_opt.zero_grad()
loss.backward()
net_opt.step()
c_l_opt.step()
feat_loader.append(feat)
label_loader.append(y)
if i % 10 == 0:
print(loss.item(), f'\t{epoch}')
feats = torch.cat(feat_loader, 0)
labels = torch.cat(label_loader, 0)
visualize(feats=feats.detach().cpu().numpy(), labels=labels.detach().cpu().numpy(), epoch=epoch)
scheduler.step()
epoch += 1
if epoch == 500:
break
pass
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。