1 Star 0 Fork 0

何鹏/onnx-tensorrt

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
trt_utils.hpp 8.19 KB
一键复制 编辑 原始数据 按行查看 历史
Ben Barsdell 提交于 2018-09-18 12:28 . Fix some opset 7 issues (#47)
/*
* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#pragma once
#include "onnx2trt.hpp"
#include "Status.hpp"
#include "TensorOrWeights.hpp"
#include <NvInfer.h>
#include <cassert>
#include <cmath>
namespace onnx2trt {
inline int get_dtype_size(nvinfer1::DataType trt_dtype) {
switch( trt_dtype ) {
case nvinfer1::DataType::kFLOAT: return 4;
case nvinfer1::DataType::kINT8: return 1;
case nvinfer1::DataType::kHALF: return 2;
#if NV_TENSORRT_MAJOR >= 4
case nvinfer1::DataType::kINT32: return 4;
#endif
// TODO: Some sort of error handling
default: return -1;
//throw std::invalid_argument("Unsupported TRT data type: " +
// std::to_string((int)trt_dtype));
}
}
inline int64_t get_shape_size(nvinfer1::Dims shape) {
// Returns total number of elements in shape
if( shape.nbDims == 0 ) {
return 0;
}
int64_t count = 1;
for( int d=0; d<shape.nbDims; ++d ) {
count *= shape.d[d];
}
return count;
}
inline nvinfer1::Dims insert_dim(nvinfer1::Dims const& dims, int idx, int value) {
assert(idx < dims.nbDims + 1);
nvinfer1::Dims new_dims;
new_dims.nbDims = dims.nbDims + 1;
for( int i=0; i<idx; ++i ) {
new_dims.d[i] = dims.d[i];
new_dims.type[i] = dims.type[i];
}
new_dims.d[idx] = value;
for( int i=idx+1; i<new_dims.nbDims; ++i ) {
new_dims.d[i] = dims.d[i - 1];
new_dims.type[i] = dims.type[i - 1];
}
return new_dims;
}
inline nvinfer1::Dims remove_dim(nvinfer1::Dims const& dims, int idx) {
assert(idx < dims.nbDims);
nvinfer1::Dims new_dims;
new_dims.nbDims = dims.nbDims - 1;
for( int i=0; i<idx; ++i ) {
new_dims.d[i] = dims.d[i];
new_dims.type[i] = dims.type[i];
}
for( int i=idx; i<new_dims.nbDims; ++i ) {
new_dims.d[i] = dims.d[i + 1];
new_dims.type[i] = dims.type[i + 1];
}
// Special case for scalar result (i.e., there was only one dim originally)
if( new_dims.nbDims == 0 ) {
new_dims.nbDims = 1;
new_dims.d[0] = 1;
new_dims.type[0] = nvinfer1::DimensionType::kCHANNEL;
}
return new_dims;
}
// Adds unitary dimensions on the left
inline nvinfer1::Dims expand_dims(nvinfer1::Dims const& dims, int ndim_new) {
assert(dims.nbDims <= ndim_new);
nvinfer1::Dims new_dims;
new_dims.nbDims = ndim_new;
int j = 0;
for( ; j<ndim_new - dims.nbDims; ++j ) {
new_dims.d[j] = 1;
}
for( int i=0; i<dims.nbDims; ++i, ++j ) {
new_dims.d[j] = dims.d[i];
}
return new_dims;
}
inline nvinfer1::Permutation
remove_first_dim(nvinfer1::Permutation const& perm) {
assert(perm.order[0] == 0);
nvinfer1::Permutation new_perm;
int ndim = nvinfer1::Dims::MAX_DIMS;
for( int i=0; i<ndim-1; ++i ) {
new_perm.order[i] = perm.order[i + 1] - 1;
}
return new_perm;
}
inline nvinfer1::Dims squeeze_trailing_dims(nvinfer1::Dims const& dims) {
nvinfer1::Dims new_dims = dims;
// Note: TRT requires at least one dimension, so we don't squeeze [1]->[]
while( new_dims.nbDims > 1 && new_dims.d[new_dims.nbDims - 1] == 1 ) {
--new_dims.nbDims;
}
return new_dims;
}
inline nvinfer1::Dims set_dims_CHW(nvinfer1::Dims const& dims) {
nvinfer1::Dims new_dims = dims;
assert(new_dims.nbDims > 0);
new_dims.type[0] = nvinfer1::DimensionType::kCHANNEL;
for( int i=1; i<new_dims.nbDims; ++i ) {
new_dims.type[i] = nvinfer1::DimensionType::kSPATIAL;
}
return new_dims;
}
inline nvinfer1::DimsHW operator-(nvinfer1::DimsHW dims) {
return nvinfer1::DimsHW(-dims.h(), -dims.w());
}
// Note: These are used for checking beg_padding == end_padding
inline bool operator==(nvinfer1::Dims const& a, nvinfer1::Dims const& b) {
if( a.nbDims != b.nbDims ) {
return false;
}
for( int i=0; i<a.nbDims; ++i ) {
if( a.d[i] != b.d[i] ) {
return false;
}
}
return true;
}
inline bool operator!=(nvinfer1::Dims const& a, nvinfer1::Dims const& b) {
return !(a == b);
}
inline nvinfer1::DimsHW get_DimsHW_from_CHW(nvinfer1::Dims dims) {
assert(dims.nbDims == 3);
return nvinfer1::DimsHW(dims.d[1], dims.d[2]);
}
inline TensorOrWeights identity(IImporterContext* ctx,
TensorOrWeights input) {
if( input.is_weights() ) {
return input;
} else {
auto* layer = ctx->network()->addShuffle(input.tensor());
if( !layer ) {
return nullptr;
}
return layer->getOutput(0);
}
}
namespace detail {
template<typename T, class Func>
void apply_unary_function(T const* idata,
T* odata,
size_t count,
Func func) {
for( size_t i=0; i<count; ++i ) {
odata[i] = func(idata[i]);
}
}
template<typename T>
Status apply_unary_function(T const* idata,
T* odata,
size_t count,
nvinfer1::UnaryOperation func) {
#define TRTUTILS_APPLY_UNARY_FUNC(func) \
apply_unary_function(idata, odata, count, [](T x) { return func; })
using namespace nvinfer1;
switch( func ) {
case UnaryOperation::kEXP: TRTUTILS_APPLY_UNARY_FUNC(exp(x)); break;
case UnaryOperation::kLOG: TRTUTILS_APPLY_UNARY_FUNC(log(x)); break;
case UnaryOperation::kSQRT: TRTUTILS_APPLY_UNARY_FUNC(sqrt(x)); break;
case UnaryOperation::kRECIP: TRTUTILS_APPLY_UNARY_FUNC(T(1) / x); break;
case UnaryOperation::kABS: TRTUTILS_APPLY_UNARY_FUNC(fabs(x)); break;
case UnaryOperation::kNEG: TRTUTILS_APPLY_UNARY_FUNC(-x); break;
default: return MAKE_ERROR("Unsupported unary function",
ErrorCode::kUNSUPPORTED_NODE);
}
return Status::success();
#undef TRTUTILS_APPLY_UNARY_FUNC
}
} // namespace detail
// TODO: This actually uses a combination of ONNX and TRT, so it may belong
// in a different file.
inline Status apply_unary_function(ShapedWeights const& iweights,
ShapedWeights* oweights,
nvinfer1::UnaryOperation func) {
assert(iweights.type == oweights->type);
assert(iweights.shape == oweights->shape);
void const* idata = iweights.values;
void* odata = const_cast<void*>(oweights->values);
size_t count = iweights.count();
switch( iweights.type ) {
case ::ONNX_NAMESPACE::TensorProto::FLOAT:
return detail::apply_unary_function(
(float*)idata, (float*)odata, count, func);
default:
return MAKE_ERROR("Unsupported weights data type for unary function",
ErrorCode::kUNSUPPORTED_NODE);
}
}
ValueOrStatus<std::vector<TensorOrWeights>>
inline apply_unary_function(IImporterContext* ctx,
TensorOrWeights& input,
nvinfer1::UnaryOperation func) {
if( input.is_weights() ) {
ShapedWeights const& weights = input.weights();
ShapedWeights new_weights =
ctx->createTempWeights(weights.type, weights.shape);
// TODO: This is a bit ugly (but safe because they share the same values
// pointer).
TRT_CHECK(apply_unary_function(weights, &new_weights, func));
return {{new_weights}};
} else {
auto* layer = ctx->network()->addUnary(
input.tensor(), func);
ASSERT(layer, ErrorCode::kUNSUPPORTED_NODE);
return {{layer->getOutput(0)}};
}
}
} // namespace onnx2trt
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/he_peng1992/onnx-tensorrt.git
git@gitee.com:he_peng1992/onnx-tensorrt.git
he_peng1992
onnx-tensorrt
onnx-tensorrt
5.1

搜索帮助