代码拉取完成,页面将自动刷新
"""Evaluate a DeepLab v3 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
import tensorflow as tf
import deeplab_model
from utils import preprocessing
from utils import dataset_util
import numpy as np
import timeit
parser = argparse.ArgumentParser()
parser.add_argument('--image_data_dir', type=str, default='dataset/VOCdevkit/VOC2012/JPEGImages',
help='The directory containing the image data.')
parser.add_argument('--label_data_dir', type=str, default='dataset/VOCdevkit/VOC2012/SegmentationClassAug',
help='The directory containing the ground truth label data.')
parser.add_argument('--evaluation_data_list', type=str, default='./dataset/val.txt',
help='Path to the file listing the evaluation images.')
parser.add_argument('--model_dir', type=str, default='./model',
help="Base directory for the model. "
"Make sure 'model_checkpoint_path' given in 'checkpoint' file matches "
"with checkpoint name.")
parser.add_argument('--base_architecture', type=str, default='resnet_v2_101',
choices=['resnet_v2_50', 'resnet_v2_101'],
help='The architecture of base Resnet building block.')
parser.add_argument('--output_stride', type=int, default=16,
choices=[8, 16],
help='Output stride for DeepLab v3. Currently 8 or 16 is supported.')
_NUM_CLASSES = 21
def main(unused_argv):
# Using the Winograd non-fused algorithms provides a small performance boost.
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
examples = dataset_util.read_examples_list(FLAGS.evaluation_data_list)
image_files = [os.path.join(FLAGS.image_data_dir, filename) + '.jpg' for filename in examples]
label_files = [os.path.join(FLAGS.label_data_dir, filename) + '.png' for filename in examples]
features, labels = preprocessing.eval_input_fn(image_files, label_files)
predictions = deeplab_model.deeplabv3_plus_model_fn(
features,
labels,
tf.estimator.ModeKeys.EVAL,
params={
'output_stride': FLAGS.output_stride,
'batch_size': 1, # Batch size must be 1 because the images' size may differ
'base_architecture': FLAGS.base_architecture,
'pre_trained_model': None,
'batch_norm_decay': None,
'num_classes': _NUM_CLASSES,
'freeze_batch_norm': True
}).predictions
# Manually load the latest checkpoint
saver = tf.train.Saver()
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(FLAGS.model_dir)
saver.restore(sess, ckpt.model_checkpoint_path)
# Loop through the batches and store predictions and labels
step = 1
sum_cm = np.zeros((_NUM_CLASSES, _NUM_CLASSES), dtype=np.int32)
start = timeit.default_timer()
while True:
try:
preds = sess.run(predictions)
sum_cm += preds['confusion_matrix']
if not step % 100:
stop = timeit.default_timer()
tf.logging.info("current step = {} ({:.3f} sec)".format(step, stop-start))
start = timeit.default_timer()
step += 1
except tf.errors.OutOfRangeError:
break
def compute_mean_iou(total_cm):
"""Compute the mean intersection-over-union via the confusion matrix."""
sum_over_row = np.sum(total_cm, axis=0).astype(float)
sum_over_col = np.sum(total_cm, axis=1).astype(float)
cm_diag = np.diagonal(total_cm).astype(float)
denominator = sum_over_row + sum_over_col - cm_diag
# The mean is only computed over classes that appear in the
# label or prediction tensor. If the denominator is 0, we need to
# ignore the class.
num_valid_entries = np.sum((denominator != 0).astype(float))
# If the value of the denominator is 0, set it to 1 to avoid
# zero division.
denominator = np.where(
denominator > 0,
denominator,
np.ones_like(denominator))
ious = cm_diag / denominator
print('Intersection over Union for each class:')
for i, iou in enumerate(ious):
print(' class {}: {:.4f}'.format(i, iou))
# If the number of valid entries is 0 (no classes) we return 0.
m_iou = np.where(
num_valid_entries > 0,
np.sum(ious) / num_valid_entries,
0)
m_iou = float(m_iou)
print('mean Intersection over Union: {:.4f}'.format(float(m_iou)))
def compute_accuracy(total_cm):
"""Compute the accuracy via the confusion matrix."""
denominator = total_cm.sum().astype(float)
cm_diag_sum = np.diagonal(total_cm).sum().astype(float)
# If the number of valid entries is 0 (no classes) we return 0.
accuracy = np.where(
denominator > 0,
cm_diag_sum / denominator,
0)
accuracy = float(accuracy)
print('Pixel Accuracy: {:.4f}'.format(float(accuracy)))
compute_mean_iou(sum_cm)
compute_accuracy(sum_cm)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。