代码拉取完成,页面将自动刷新
#!/usr/bin/python3
"""Training and Validation On Segmentation Task."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import math
import random
import shutil
import argparse
import importlib
import data_utils
import numpy as np
import pointfly as pf
import tensorflow as tf
from datetime import datetime
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--filelist', '-t', help='Path to training set ground truth (.txt)', required=True)
parser.add_argument('--filelist_val', '-v', help='Path to validation set ground truth (.txt)', required=True)
parser.add_argument('--load_ckpt', '-l', help='Path to a check point file for load')
parser.add_argument('--save_folder', '-s', help='Path to folder for saving check points and summary', required=True)
parser.add_argument('--model', '-m', help='Model to use', required=True)
parser.add_argument('--setting', '-x', help='Setting to use', required=True)
parser.add_argument('--epochs', help='Number of training epochs (default defined in setting)', type=int)
parser.add_argument('--batch_size', help='Batch size (default defined in setting)', type=int)
parser.add_argument('--log', help='Log to FILE in save folder; use - for stdout (default is log.txt)', metavar='FILE', default='log.txt')
parser.add_argument('--no_timestamp_folder', help='Dont save to timestamp folder', action='store_true')
parser.add_argument('--no_code_backup', help='Dont backup code', action='store_true')
args = parser.parse_args()
if not args.no_timestamp_folder:
time_string = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
root_folder = os.path.join(args.save_folder, '%s_%s_%s_%d' % (args.model, args.setting, time_string, os.getpid()))
else:
root_folder = args.save_folder
if not os.path.exists(root_folder):
os.makedirs(root_folder)
if args.log != '-':
sys.stdout = open(os.path.join(root_folder, args.log), 'w')
print('PID:', os.getpid())
print(args)
model = importlib.import_module(args.model)
setting_path = os.path.join(os.path.dirname(__file__), args.model)
sys.path.append(setting_path)
setting = importlib.import_module(args.setting)
num_epochs = args.epochs or setting.num_epochs
batch_size = args.batch_size or setting.batch_size
sample_num = setting.sample_num
step_val = setting.step_val
label_weights_list = setting.label_weights
rotation_range = setting.rotation_range
rotation_range_val = setting.rotation_range_val
scaling_range = setting.scaling_range
scaling_range_val = setting.scaling_range_val
jitter = setting.jitter
jitter_val = setting.jitter_val
# Prepare inputs
print('{}-Preparing datasets...'.format(datetime.now()))
is_list_of_h5_list = not data_utils.is_h5_list(args.filelist)
if is_list_of_h5_list:
seg_list = data_utils.load_seg_list(args.filelist)
seg_list_idx = 0
filelist_train = seg_list[seg_list_idx]
seg_list_idx = seg_list_idx + 1
else:
filelist_train = args.filelist
data_train, _, data_num_train, label_train, _ = data_utils.load_seg(filelist_train)
data_val, _, data_num_val, label_val, _ = data_utils.load_seg(args.filelist_val)
# shuffle
data_train, data_num_train, label_train = \
data_utils.grouped_shuffle([data_train, data_num_train, label_train])
num_train = data_train.shape[0]
point_num = data_train.shape[1]
num_val = data_val.shape[0]
print('{}-{:d}/{:d} training/validation samples.'.format(datetime.now(), num_train, num_val))
batch_num = (num_train * num_epochs + batch_size - 1) // batch_size
print('{}-{:d} training batches.'.format(datetime.now(), batch_num))
batch_num_val = math.ceil(num_val / batch_size)
print('{}-{:d} testing batches per test.'.format(datetime.now(), batch_num_val))
######################################################################
# Placeholders
indices = tf.placeholder(tf.int32, shape=(None, None, 2), name="indices")
xforms = tf.placeholder(tf.float32, shape=(None, 3, 3), name="xforms")
rotations = tf.placeholder(tf.float32, shape=(None, 3, 3), name="rotations")
jitter_range = tf.placeholder(tf.float32, shape=(1), name="jitter_range")
global_step = tf.Variable(0, trainable=False, name='global_step')
is_training = tf.placeholder(tf.bool, name='is_training')
pts_fts = tf.placeholder(tf.float32, shape=(None, point_num, setting.data_dim), name='pts_fts')
labels_seg = tf.placeholder(tf.int64, shape=(None, point_num), name='labels_seg')
labels_weights = tf.placeholder(tf.float32, shape=(None, point_num), name='labels_weights')
######################################################################
pts_fts_sampled = tf.gather_nd(pts_fts, indices=indices, name='pts_fts_sampled')
features_augmented = None
if setting.data_dim > 3:
points_sampled, features_sampled = tf.split(pts_fts_sampled,
[3, setting.data_dim - 3],
axis=-1,
name='split_points_features')
if setting.use_extra_features:
if setting.with_normal_feature:
if setting.data_dim < 6:
print('Only 3D normals are supported!')
exit()
elif setting.data_dim == 6:
features_augmented = pf.augment(features_sampled, rotations)
else:
normals, rest = tf.split(features_sampled, [3, setting.data_dim - 6])
normals_augmented = pf.augment(normals, rotations)
features_augmented = tf.concat([normals_augmented, rest], axis=-1)
else:
features_augmented = features_sampled
else:
points_sampled = pts_fts_sampled
points_augmented = pf.augment(points_sampled, xforms, jitter_range)
labels_sampled = tf.gather_nd(labels_seg, indices=indices, name='labels_sampled')
labels_weights_sampled = tf.gather_nd(labels_weights, indices=indices, name='labels_weight_sampled')
net = model.Net(points_augmented, features_augmented, is_training, setting)
logits = net.logits
probs = tf.nn.softmax(logits, name='probs')
predictions = tf.argmax(probs, axis=-1, name='predictions')
loss_op = tf.losses.sparse_softmax_cross_entropy(labels=labels_sampled, logits=logits,
weights=labels_weights_sampled)
with tf.name_scope('metrics'):
loss_mean_op, loss_mean_update_op = tf.metrics.mean(loss_op)
t_1_acc_op, t_1_acc_update_op = tf.metrics.accuracy(labels_sampled, predictions, weights=labels_weights_sampled)
t_1_per_class_acc_op, t_1_per_class_acc_update_op = \
tf.metrics.mean_per_class_accuracy(labels_sampled, predictions, setting.num_class,
weights=labels_weights_sampled)
reset_metrics_op = tf.variables_initializer([var for var in tf.local_variables()
if var.name.split('/')[0] == 'metrics'])
_ = tf.summary.scalar('loss/train', tensor=loss_mean_op, collections=['train'])
_ = tf.summary.scalar('t_1_acc/train', tensor=t_1_acc_op, collections=['train'])
_ = tf.summary.scalar('t_1_per_class_acc/train', tensor=t_1_per_class_acc_op, collections=['train'])
_ = tf.summary.scalar('loss/val', tensor=loss_mean_op, collections=['val'])
_ = tf.summary.scalar('t_1_acc/val', tensor=t_1_acc_op, collections=['val'])
_ = tf.summary.scalar('t_1_per_class_acc/val', tensor=t_1_per_class_acc_op, collections=['val'])
lr_exp_op = tf.train.exponential_decay(setting.learning_rate_base, global_step, setting.decay_steps,
setting.decay_rate, staircase=True)
lr_clip_op = tf.maximum(lr_exp_op, setting.learning_rate_min)
_ = tf.summary.scalar('learning_rate', tensor=lr_clip_op, collections=['train'])
reg_loss = setting.weight_decay * tf.losses.get_regularization_loss()
if setting.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate=lr_clip_op, epsilon=setting.epsilon)
elif setting.optimizer == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate=lr_clip_op, momentum=setting.momentum, use_nesterov=True)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss_op + reg_loss, global_step=global_step)
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
saver = tf.train.Saver(max_to_keep=None)
# backup all code
if not args.no_code_backup:
code_folder = os.path.abspath(os.path.dirname(__file__))
shutil.copytree(code_folder, os.path.join(root_folder, os.path.basename(code_folder)))
folder_ckpt = os.path.join(root_folder, 'ckpts')
if not os.path.exists(folder_ckpt):
os.makedirs(folder_ckpt)
folder_summary = os.path.join(root_folder, 'summary')
if not os.path.exists(folder_summary):
os.makedirs(folder_summary)
parameter_num = np.sum([np.prod(v.shape.as_list()) for v in tf.trainable_variables()])
print('{}-Parameter number: {:d}.'.format(datetime.now(), parameter_num))
with tf.Session() as sess:
summaries_op = tf.summary.merge_all('train')
summaries_val_op = tf.summary.merge_all('val')
summary_writer = tf.summary.FileWriter(folder_summary, sess.graph)
sess.run(init_op)
# Load the model
if args.load_ckpt is not None:
saver.restore(sess, args.load_ckpt)
print('{}-Checkpoint loaded from {}!'.format(datetime.now(), args.load_ckpt))
else:
latest_ckpt = tf.train.latest_checkpoint(folder_ckpt)
if latest_ckpt:
print('{}-Found checkpoint {}'.format(datetime.now(), latest_ckpt))
saver.restore(sess, latest_ckpt)
print('{}-Checkpoint loaded from {} (Iter {})'.format(
datetime.now(), latest_ckpt, sess.run(global_step)))
for batch_idx_train in range(batch_num):
######################################################################
# Validation
if (batch_idx_train % step_val == 0 and (batch_idx_train != 0 or args.load_ckpt is not None)) \
or batch_idx_train == batch_num - 1:
filename_ckpt = os.path.join(folder_ckpt, 'iter')
saver.save(sess, filename_ckpt, global_step=global_step)
print('{}-Checkpoint saved to {}!'.format(datetime.now(), filename_ckpt))
sess.run(reset_metrics_op)
for batch_val_idx in range(batch_num_val):
start_idx = batch_size * batch_val_idx
end_idx = min(start_idx + batch_size, num_val)
batch_size_val = end_idx - start_idx
points_batch = data_val[start_idx:end_idx, ...]
points_num_batch = data_num_val[start_idx:end_idx, ...]
labels_batch = label_val[start_idx:end_idx, ...]
weights_batch = np.array(label_weights_list)[labels_batch]
xforms_np, rotations_np = pf.get_xforms(batch_size_val,
rotation_range=rotation_range_val,
scaling_range=scaling_range_val,
order=setting.rotation_order)
sess.run([loss_mean_update_op, t_1_acc_update_op, t_1_per_class_acc_update_op],
feed_dict={
pts_fts: points_batch,
indices: pf.get_indices(batch_size_val, sample_num, points_num_batch),
xforms: xforms_np,
rotations: rotations_np,
jitter_range: np.array([jitter_val]),
labels_seg: labels_batch,
labels_weights: weights_batch,
is_training: False,
})
loss_val, t_1_acc_val, t_1_per_class_acc_val, summaries_val, step = sess.run(
[loss_mean_op, t_1_acc_op, t_1_per_class_acc_op, summaries_val_op, global_step])
summary_writer.add_summary(summaries_val, step)
print('{}-[Val ]-Average: Loss: {:.4f} T-1 Acc: {:.4f} T-1 mAcc: {:.4f}'
.format(datetime.now(), loss_val, t_1_acc_val, t_1_per_class_acc_val))
sys.stdout.flush()
######################################################################
######################################################################
# Training
start_idx = (batch_size * batch_idx_train) % num_train
end_idx = min(start_idx + batch_size, num_train)
batch_size_train = end_idx - start_idx
points_batch = data_train[start_idx:end_idx, ...]
points_num_batch = data_num_train[start_idx:end_idx, ...]
labels_batch = label_train[start_idx:end_idx, ...]
weights_batch = np.array(label_weights_list)[labels_batch]
if start_idx + batch_size_train == num_train:
if is_list_of_h5_list:
filelist_train_prev = seg_list[(seg_list_idx - 1) % len(seg_list)]
filelist_train = seg_list[seg_list_idx % len(seg_list)]
if filelist_train != filelist_train_prev:
data_train, _, data_num_train, label_train, _ = data_utils.load_seg(filelist_train)
num_train = data_train.shape[0]
seg_list_idx = seg_list_idx + 1
data_train, data_num_train, label_train = \
data_utils.grouped_shuffle([data_train, data_num_train, label_train])
offset = int(random.gauss(0, sample_num * setting.sample_num_variance))
offset = max(offset, -sample_num * setting.sample_num_clip)
offset = min(offset, sample_num * setting.sample_num_clip)
sample_num_train = sample_num + offset
xforms_np, rotations_np = pf.get_xforms(batch_size_train,
rotation_range=rotation_range,
scaling_range=scaling_range,
order=setting.rotation_order)
sess.run(reset_metrics_op)
sess.run([train_op, loss_mean_update_op, t_1_acc_update_op, t_1_per_class_acc_update_op],
feed_dict={
pts_fts: points_batch,
indices: pf.get_indices(batch_size_train, sample_num_train, points_num_batch),
xforms: xforms_np,
rotations: rotations_np,
jitter_range: np.array([jitter]),
labels_seg: labels_batch,
labels_weights: weights_batch,
is_training: True,
})
if batch_idx_train % 10 == 0:
loss, t_1_acc, t_1_per_class_acc, summaries, step = sess.run([loss_mean_op,
t_1_acc_op,
t_1_per_class_acc_op,
summaries_op,
global_step])
summary_writer.add_summary(summaries, step)
print('{}-[Train]-Iter: {:06d} Loss: {:.4f} T-1 Acc: {:.4f} T-1 mAcc: {:.4f}'
.format(datetime.now(), step, loss, t_1_acc, t_1_per_class_acc))
sys.stdout.flush()
######################################################################
print('{}-Done!'.format(datetime.now()))
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。