代码拉取完成,页面将自动刷新
#
#
# 0=================================0
# | Kernel Point Convolutions |
# 0=================================0
#
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Callable script to start a training on Semantic3D dataset
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Hugues THOMAS - 11/06/2018
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Imports and global variables
# \**********************************/
#
# Common libs
import time
import os
import sys
import numpy as np
from sklearn.metrics import confusion_matrix
# Custom libs
from utils.config import Config
from utils.trainer import ModelTrainer
from models.KPFCNN_model import KernelPointFCNN
# Dataset
from datasets.Semantic3D import Semantic3DDataset
# ----------------------------------------------------------------------------------------------------------------------
#
# Config Class
# \******************/
#
class Semantic3DConfig(Config):
"""
Override the parameters you want to modify for this dataset
"""
####################
# Dataset parameters
####################
# Dataset name in the format 'ShapeNetPart_Object' to segment an object class independently or 'ShapeNetPart_multi'
# to segment all objects with a single model.
dataset = 'Semantic3D'
# Number of classes in the dataset (This value is overwritten by dataset class when initiating input pipeline).
num_classes = None
# Type of task performed on this dataset (also overwritten)
network_model = None
# Number of CPU threads for the input pipeline
input_threads = 8
#########################
# Architecture definition
#########################
# Define layers
architecture = ['simple',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb_strided',
'resnetb',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary']
# KPConv specific parameters
num_kernel_points = 15
first_subsampling_dl = 0.06
in_radius = 3.0
# Density of neighborhoods for deformable convs (which need bigger radiuses). For normal conv we use KP_extent
density_parameter = 5.0
# Behavior of convolutions in ('constant', 'linear', gaussian)
KP_influence = 'linear'
KP_extent = 1.0
# Behavior of convolutions in ('closest', 'sum')
convolution_mode = 'sum'
# Can the network learn modulations
modulated = False
# Offset loss
# 'permissive' only constrains offsets inside the big radius
# 'fitting' helps deformed kernels to adapt to the geometry by penalizing distance to input points
offsets_loss = 'fitting'
offsets_decay = 0.1
# Choice of input features
in_features_dim = 4
# Batch normalization parameters
use_batch_norm = True
batch_norm_momentum = 0.98
#####################
# Training parameters
#####################
# Maximal number of epochs
max_epoch = 500
# Learning rate management
learning_rate = 1e-2
momentum = 0.98
lr_decays = {i: 0.1**(1/100) for i in range(1, max_epoch)}
grad_clip_norm = 100.0
# Number of batch
batch_num = 10
# Number of steps per epochs (cannot be None for this dataset)
epoch_steps = 500
# Number of validation examples per epoch
validation_size = 50
# Number of epoch between each snapshot
snapshot_gap = 50
# Augmentations
augment_scale_anisotropic = True
augment_symmetries = [True, False, False]
augment_rotation = 'vertical'
augment_scale_min = 0.9
augment_scale_max = 1.1
augment_noise = 0.001
augment_occlusion = 'none'
augment_color = 1.0
# Whether to use loss averaged on all points, or averaged per batch.
batch_averaged_loss = False
# Do we nee to save convergence
saving = True
saving_path = None
# ----------------------------------------------------------------------------------------------------------------------
#
# Main Call
# \***************/
#
if __name__ == '__main__':
##########################
# Initiate the environment
##########################
# Choose which gpu to use
GPU_ID = '0'
# Set GPU visible device
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID
# Enable/Disable warnings (set level to '0'/'3')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0'
###########################
# Load the model parameters
###########################
config = Semantic3DConfig()
##############
# Prepare Data
##############
print()
print('Dataset Preparation')
print('*******************')
# Initiate dataset configuration
dataset = Semantic3DDataset(config.input_threads)
# Create subsampled input clouds
dl0 = config.first_subsampling_dl
dataset.load_subsampled_clouds(dl0)
# Initialize input pipelines
dataset.init_input_pipeline(config)
# Test the input pipeline alone with this debug function
# dataset.check_input_pipeline_timing(config)
##############
# Define Model
##############
print('Creating Model')
print('**************\n')
t1 = time.time()
# Model class
model = KernelPointFCNN(dataset.flat_inputs, config)
# Trainer class
trainer = ModelTrainer(model)
t2 = time.time()
print('\n----------------')
print('Done in {:.1f} s'.format(t2 - t1))
print('----------------\n')
################
# Start training
################
print('Start Training')
print('**************\n')
trainer.train(model, dataset)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。