代码拉取完成,页面将自动刷新
import ChatGLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.tools import Tool
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.tools import ArxivQueryRun
from langchain.memory import ConversationBufferMemory
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import BaseTool, StructuredTool, tool
from langchain.tools import BaseTool
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import BaseTool, StructuredTool, tool
from langchain.agents import load_tools
from math import pi
from typing import Union
from typing import Optional, Type
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools import BaseTool
from math import pi
from typing import Union
from typing import Optional
from math import sqrt, cos, sin
from langchain.chains import LLMMathChain
from langchain.agents import Tool
from langchain_core.runnables import RunnableLambda
def add_five(x):
return x + 5
def multiply_by_two(x):
return {"topic": "beijing"}
# wrap the functions with RunnableLambda
add_five = RunnableLambda(add_five)
multiply_by_two = RunnableLambda(multiply_by_two)
prompt = ChatPromptTemplate.from_template("tell me the weather of {topic}")
llm = ChatGLM.ChatGLM_LLM()
chain = add_five | multiply_by_two | prompt | llm
print(chain.invoke(5))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。