代码拉取完成,页面将自动刷新
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import os
import torch, torchvision
from random import randint
from utils.loss_utils import l1_loss, ssim, nerfw_loss
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
# 创建 ‘GaussianModel’模型,给点云中的每个点创建一个 3D Gaussian
gaussians = GaussianModel(dataset)
# 加载数据集和每张图片对应的 camera 的参数
scene = Scene(dataset, gaussians)
# 为 3D Gaussian 的各组参数创建 optimizer 和 lr_scheduler
gaussians.training_setup(opt)
# 加载模型参数
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
# 设置背景颜色并放置 cuda 上
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
if args.network_gui:
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
# 更新 xyz 的学习率
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
# 每迭代 1000 轮次将球谐的阶数 +1,直到达到最大阶数
# if iteration % 1000 == 0:
# gaussians.oneupSHdegree()
# Pick a random Camera
# 随机选择一个图片和对应的视角参数(内外参)
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
idx = randint(0, len(viewpoint_stack)-1)
viewpoint_cam = viewpoint_stack.pop(idx)
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
# 根据 3D Gaussian 渲染该相机视角下的图像
render_pkg = render(viewpoint_cam, gaussians, pipe, background)
# 渲染得到的图片
image = render_pkg["render"]
# 渲染得到的遮挡率
occlusion = render_pkg["occlusions"]
# 所有 xyz 的梯度
viewspace_point_tensor = render_pkg["viewspace_points"]
# 有效 3D Gaussian 的选择矩阵:视锥内 and radii>0
visibility_filter = render_pkg["visibility_filter"]
# 二维投影后的椭圆半径
radii = render_pkg["radii"]
# Loss
gt_image = viewpoint_cam.original_image.cuda()
# 在渲染图像和 GT 图像之间计算 loss
loss = nerfw_loss(image, gt_image, occlusion)
Ll1 = l1_loss(image, gt_image)
# loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{6}f}", "PC number": gaussians.get_xyz.shape[0]})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background))
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# Densification
# 对 3D Gaussian 进行稠密化
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
# 将投影得到的椭圆半径更新到 max_radii2D 中进行记录
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
# 记录 xyz 的梯度 xyz_gradient_accum 的变化,用以进行稠密化
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration % 100 == 0:
print(gaussians.get_importance.mean())
torchvision.utils.save_image(occlusion.repeat(3,1,1), os.path.join(dataset.model_path, f'{iteration:05d}-{idx}.png'))
# 从某迭代轮次开始,每隔一定轮次进行 3D Gaussian 稠密化
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
# 参数:xyz 梯度阈值、不透明度阈值、椭球体尺度阈值、投影椭圆的最大半径阈值
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, 2.0, scene.cameras_extent, size_threshold)
# 每隔一定迭代轮次 or (背景为白色 and 开始稠密化时)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
def prepare_output_and_logger(args):
if not args.model_path:
args.model_path = os.path.join("./output/", args.source_path.split(os.sep)[-1])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer:SummaryWriter, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
scene.gaussians.eval()
torch.cuda.empty_cache()
validation_configs = (
{'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]},
)
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
render_pkg = renderFunc(viewpoint, scene.gaussians, *renderArgs)
image = torch.clamp(render_pkg["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image, global_step=iteration, dataformats='CHW')
tb_writer.add_images(config['name'] + "_view_{}/occlusion".format(viewpoint.image_name), render_pkg["occlusions"], global_step=iteration, dataformats='HW')
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image, global_step=iteration, dataformats='CHW')
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
scene.gaussians.train()
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--network_gui', action='store_true', help='enable network_gui for training monitor')
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
if args.network_gui:
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args),
op.extract(args),
pp.extract(args),
args.test_iterations,
args.save_iterations,
args.checkpoint_iterations,
args.start_checkpoint,
args.debug_from)
# All done
print("\nTraining complete.")
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。