代码拉取完成,页面将自动刷新
import cv2
import time
import math
import os
import numpy as np
from PIL import Image
import locality_aware_nms as nms_locality
import lanms
import shutil
import torch
import model
from data_utils import restore_rectangle, polygon_area
from torch.autograd import Variable
import config as cfg
import sys
from torchvision import transforms
import model
test_data_path = cfg.test_img_path
def rotate(box_List,image):
#xuan zhuan tu pian
n=len(box_List)
c=0;
angle=0
for i in range(n):
box=box_List[i]
y1 = min(box[0][1], box[1][1], box[2][1], box[3][1])
y2 = max(box[0][1], box[1][1], box[2][1], box[3][1])
x1 = min(box[0][0], box[1][0], box[2][0], box[3][0])
x2 = max(box[0][0], box[1][0], box[2][0], box[3][0])
for j in range(4):
if(box[j][1]==y2):
k1=j
for j in range(4):
if(box[j][0]==x2 and j!=k1):
k2=j
c=(box[k1][0]-box[k2][0])*1.0/(box[k1][1]-box[k2][1])
if(c<0):
c=-c
if(c>1):
c=1.0/c
angle=math.atan(c)+angle
angle=angle/n
(h, w) = image.shape[:2]
center = (w / 2, h / 2)
scale=1
M = cv2.getRotationMatrix2D(center,angle, scale)
image_new = cv2.warpAffine(image, M, (w, h))
return image_new
def get_images_for_test():
'''
find image files in test data path
:return: list of files found
'''
files = []
exts = ['jpg', 'png', 'jpeg', 'JPG']
for parent, dirnames, filenames in os.walk(test_data_path):
for filename in filenames:
for ext in exts:
if filename.endswith(ext):
files.append(os.path.join(parent, filename))
break
# print('Find {} images'.format(len(files)))
return files
def resize_image(im, max_side_len=2400):
'''
resize image to a size multiple of 32 which is required by the network
:param im: the resized image
:param max_side_len: limit of max image size to avoid out of memory in gpu
:return: the resized image and the resize ratio
'''
h, w, _ = im.shape
resize_w = w
resize_h = h
# limit the max side
"""
if max(resize_h, resize_w) > max_side_len:
ratio = float(max_side_len) / resize_h if resize_h > resize_w else float(max_side_len) / resize_w
else:
ratio = 1.
resize_h = int(resize_h * ratio)
resize_w = int(resize_w * ratio)
"""
resize_h = resize_h if resize_h % 32 == 0 else (resize_h // 32 - 1) * 32
resize_w = resize_w if resize_w % 32 == 0 else (resize_w // 32 - 1) * 32
#resize_h, resize_w = 512, 512
im = cv2.resize(im, (int(resize_w), int(resize_h)))
ratio_h = resize_h / float(h)
ratio_w = resize_w / float(w)
return im, (ratio_h, ratio_w)
def detect(score_map, geo_map, timer, score_map_thresh=1e-5, box_thresh=1e-8, nms_thres=0.1):
'''
restore text boxes from score map and geo map
:param score_map:
:param geo_map:
:param timer:
:param score_map_thresh: threshhold for score map
:param box_thresh: threshhold for boxes
:param nms_thres: threshold for nms
:return:
'''
if len(score_map.shape) == 4:
score_map = score_map[0, :, :, 0]
geo_map = geo_map[0, :, :, ]
# filter the score map
xy_text = np.argwhere(score_map > score_map_thresh)
# sort the text boxes via the y axis
xy_text = xy_text[np.argsort(xy_text[:, 0])]
# restore
start = time.time()
text_box_restored = restore_rectangle(xy_text[:, ::-1]*4, geo_map[xy_text[:, 0], xy_text[:, 1], :]) # N*4*2
#print('{} text boxes before nms'.format(text_box_restored.shape[0]))
boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
boxes[:, :8] = text_box_restored.reshape((-1, 8))
boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
timer['restore'] = time.time() - start
# nms part
start = time.time()
# boxes = nms_locality.nms_locality(boxes.astype(np.float64), nms_thres)
boxes = lanms.merge_quadrangle_n9(boxes.astype('float32'), nms_thres)
timer['nms'] = time.time() - start
if boxes.shape[0] == 0:
return None, timer
# here we filter some low score boxes by the average score map, this is different from the orginal paper
for i, box in enumerate(boxes):
mask = np.zeros_like(score_map, dtype=np.uint8)
cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32) // 4, 1)
boxes[i, 8] = cv2.mean(score_map, mask)[0]
boxes = boxes[boxes[:, 8] > box_thresh]
return boxes, timer
def sort_poly(p):
min_axis = np.argmin(np.sum(p, axis=1))
p = p[[min_axis, (min_axis+1)%4, (min_axis+2)%4, (min_axis+3)%4]]
if abs(p[0, 0] - p[1, 0]) > abs(p[0, 1] - p[1, 1]):
return p
else:
return p[[0, 3, 2, 1]]
def change_box(box_List):
n=len(box_List)
for i in range(n):
box=box_List[i]
y1 = min(box[0][1], box[1][1], box[2][1], box[3][1])
y2 = max(box[0][1], box[1][1], box[2][1], box[3][1])
x1 = min(box[0][0], box[1][0], box[2][0], box[3][0])
x2 = max(box[0][0], box[1][0], box[2][0], box[3][0])
box[0][1]=y1
box[0][0]=x1
box[1][1]=y1
box[1][0]=x2
box[3][1]=y2
box[3][0]=x1
box[2][1]=y2
box[2][0]=x2
box_List[i]=box
return box_List
def save_box(box_List,image,img_path):
n=len(box_List)
box_final = []
for i in range(n):
box=box_List[i]
y1_0 = int(min(box[0][1], box[1][1], box[2][1], box[3][1]))
y2_0 = int(max(box[0][1], box[1][1], box[2][1], box[3][1]))
x1_0 = int(min(box[0][0], box[1][0], box[2][0], box[3][0]))
x2_0 = int(max(box[0][0], box[1][0], box[2][0], box[3][0]))
y1 = max(int(y1_0 - 0.1 * (y2_0 - y1_0)), 0)
y2 = min(int(y2_0 + 0.1 * (y2_0 - y1_0)), image.shape[0] - 1)
x1 = max(int(x1_0 - 0.25 * (x2_0 - x1_0)), 0)
x2 = min(int(x2_0 + 0.25 * (x2_0 - x1_0)), image.shape[1] - 1)
image_new=image[y1:y2,x1:x2]
# # 图像处理
gray_2 = image_new[:,:,0]
gradX = cv2.Sobel(gray_2, ddepth = cv2.CV_32F, dx = 1, dy = 0, ksize = -1)
gradY = cv2.Sobel(gray_2, ddepth = cv2.CV_32F, dx = 0, dy = 1, ksize = -1)
blurred = cv2.blur(gradX, (2, 2))
(_, thresh) = cv2.threshold(blurred, 160, 255, cv2.THRESH_BINARY)
# closed = cv2.erode(thresh, None, iterations = 1)
# closed = cv2.dilate(closed, None, iterations = 1)
closed = thresh
x_plus = []
x_left = 1
x_right = closed.shape[1]
for jj in range(0, closed.shape[1]):
plus = 0
for ii in range(0, closed.shape[0]):
plus = plus + closed[ii][jj]
x_plus.append(plus)
for jj in range(0, int(closed.shape[1] * 0.5 - 1)):
if(x_plus[jj] > 0.4 * max(x_plus)):
x_left = max(jj - 5, 0)
break
for ii in range(closed.shape[1] - 1, int(closed.shape[1] * 0.5 + 1), -1):
if(x_plus[ii] > 0.4 * max(x_plus)):
x_right = min(ii + 5, closed.shape[1] - 1)
break
image_new = image_new[:, x_left:x_right]
cv2.imwrite("." + img_path.split(".")[1]+'_'+str(i)+".jpg", image_new)
box[0][1]=y1
box[0][0]=x1 + x_left
box[1][1]=y1
box[1][0]=x1 + x_right
box[3][1]=y2
box[3][0]=x1 + x_left
box[2][1]=y2
box[2][0]=x1 + x_right
box_List[i]=box
return box_List
def transform_for_test():
"""
CV2 => PI => tensor
"""
#image = Image.fromarray(np.uint8(img))
transform_list = []
transform_list.append(transforms.ToTensor())
transform_list.append(transforms.Normalize(mean=(0.5,0.5,0.5),std=(0.5,0.5,0.5)))
transform = transforms.Compose(transform_list)
return transform
def predict(model, criterion, epoch):
# prepare ooutput directory
print('EAST <==> TEST <==> Create Res_file and Img_with_box <==> Begin')
result_root = os.path.abspath(cfg.result)
if not os.path.exists(result_root):
os.mkdir(result_root)
output_dir_txt = os.path.join(result_root, 'epoch_'+str(epoch)+'_gt')
output_dir_pic = os.path.join(result_root, 'epoch_'+str(epoch)+'_img_with_box')
try:
shutil.rmtree(output_dir_txt)
except:
print('Dir {} is not exists, make it'.format(output_dir_txt))
try:
shutil.rmtree(output_dir_pic)
except:
print('Dir {} is not exists, make it'.format(output_dir_pic))
try:
os.mkdir(output_dir_txt)
os.mkdir(output_dir_pic)
except OSError as e:
if e.errno != 17:
raise
print('EAST <==> TEST <==> Create Res_file and Img_with_box Directory ')
model = model.eval()
im_fn_list = get_images_for_test()
start = time.time()
for idx, im_fn in enumerate(im_fn_list):
print('EAST <==> TEST <==> idx:{} <==> Begin'.format(idx))
im = cv2.imread(im_fn)[:, :, ::-1]
#transform = transform_for_test()
start_time = time.time()
im_resized, (ratio_h, ratio_w) = resize_image(im)
im_resized = im_resized.astype(np.float32)
#image = Image.fromarray(np.uint8(im_resized))
#im_resized = transform(image)
im_resized = im_resized.transpose(2, 0, 1)
im_resized = torch.from_numpy(im_resized)
im_resized = im_resized.cuda()
im_resized = im_resized.unsqueeze(0)
#im_resized = im_resized.permute(0, 3, 1, 2)
timer = {'net': 0, 'restore': 0, 'nms': 0}
start = time.time()
score, geometry = model(im_resized)
timer['net'] = time.time() - start
print('EAST <==> TEST <==> idx:{} <==> model :{:.2f}ms'.format(idx, timer['net']*1000))
score = score.permute(0, 2, 3, 1)
geometry = geometry.permute(0, 2, 3, 1)
score = score.data.cpu().numpy()
geometry = geometry.data.cpu().numpy()
boxes, timer = detect(score_map=score, geo_map=geometry, timer=timer)
print('EAST <==> TEST <==> idx:{} <==> restore:{:.2f}ms'.format(idx, timer['restore']*1000))
print('EAST <==> TEST <==> idx:{} <==> nms :{:.2f}ms'.format(idx, timer['nms']*1000))
print('EAST <==> TEST <==> Record and Save <==> id:{} <==> Begin'.format(idx))
if boxes is not None:
boxes = boxes[:, :8].reshape((-1, 4, 2))
boxes[:, :, 0] /= ratio_w
boxes[:, :, 1] /= ratio_h
if boxes is not None:
res_file = os.path.join(output_dir_txt, 'res_img_{}.txt'.format(os.path.basename(im_fn).split('_')[-1].strip('.jpg')))
with open(res_file, 'w') as f:
for box in boxes:
box = sort_poly(box.astype(np.int32))
if np.linalg.norm(box[0] - box[1]) < 5 or np.linalg.norm(box[3] - box[0]) < 5:
#print('wrong direction')
continue
if box[0, 0] < 0 or box[0, 1] < 0 or box[1,0] < 0 or box[1,1] < 0 or box[2,0]<0 or box[2,1]<0 or box[3,0] < 0 or box[3,1]<0:
continue
poly = np.array([[box[0, 0], box[0, 1]], [box[1, 0], box[1, 1]], [box[2, 0], box[2, 1]], [box[3, 0], box[3, 1]]])
p_area = polygon_area(poly)
if p_area > 0:
poly = poly[(0, 3, 2, 1), :]
f.write('{},{},{},{},{},{},{},{}\r\n'.format(poly[0, 0], poly[0, 1], poly[1, 0], poly[1, 1], poly[2, 0], poly[2, 1], poly[3, 0], poly[3, 1],))
cv2.polylines(im[:, :, ::-1], [box.astype(np.int32).reshape((-1, 1, 2))], True, color=(255, 255, 0), thickness=1)
save_img_path = os.path.join(output_dir_pic, os.path.basename(im_fn))
cv2.imwrite(save_img_path, im[:, :, ::-1])
print('EAST <==> TEST <==> Save txt at:{} <==> Done'.format(res_file))
print('EAST <==> TEST <==> Save image at:{} <==> Done'.format(save_img_path))
print('EAST <==> TEST <==> Record and Save <==> ids:{} <==> Done'.format(idx))
return output_dir_txt
if __name__ == "__main__":
predict()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。