代码拉取完成,页面将自动刷新
#!/usr/bin/env python3
# This file is covered by the LICENSE file in the root of this project.
import argparse
import os
import yaml
import numpy as np
import collections
from auxiliary.laserscan import SemLaserScan
if __name__ == '__main__':
parser = argparse.ArgumentParser("./content.py")
parser.add_argument(
'--dataset', '-d',
type=str,
required=True,
help='Dataset to calculate content. No Default',
)
parser.add_argument(
'--config', '-c',
type=str,
required=False,
default="config/semantic-kitti.yaml",
help='Dataset config file. Defaults to %(default)s',
)
FLAGS, unparsed = parser.parse_known_args()
# print summary of what we will do
print("*" * 80)
print("INTERFACE:")
print("Dataset", FLAGS.dataset)
print("Config", FLAGS.config)
print("*" * 80)
# open config file
try:
print("Opening config file %s" % FLAGS.config)
CFG = yaml.safe_load(open(FLAGS.config, 'r'))
except Exception as e:
print(e)
print("Error opening yaml file.")
quit()
# get training sequences to calculate statistics
sequences = CFG["split"]["train"]
print("Analizing sequences", sequences)
# create content accumulator
accum = {}
total = 0.0
for key, _ in CFG["labels"].items():
accum[key] = 0
# itearate over sequences
for seq in sequences:
seq_accum = {}
seq_total = 0.0
for key, _ in CFG["labels"].items():
seq_accum[key] = 0
# make seq string
print("*" * 80)
seqstr = '{0:02d}'.format(int(seq))
print("parsing seq {}".format(seq))
# does sequence folder exist?
scan_paths = os.path.join(FLAGS.dataset, "sequences",
seqstr, "velodyne")
if os.path.isdir(scan_paths):
print("Sequence folder exists!")
else:
print("Sequence folder doesn't exist! Exiting...")
quit()
# populate the pointclouds
scan_names = [os.path.join(dp, f) for dp, dn, fn in os.walk(
os.path.expanduser(scan_paths)) for f in fn]
scan_names.sort()
# does sequence folder exist?
label_paths = os.path.join(FLAGS.dataset, "sequences",
seqstr, "labels")
if os.path.isdir(label_paths):
print("Labels folder exists!")
else:
print("Labels folder doesn't exist! Exiting...")
quit()
# populate the pointclouds
label_names = [os.path.join(dp, f) for dp, dn, fn in os.walk(
os.path.expanduser(label_paths)) for f in fn]
label_names.sort()
# check that there are same amount of labels and scans
print(len(label_names))
print(len(scan_names))
assert(len(label_names) == len(scan_names))
# create a scan
nclasses = len(CFG["labels"])
scan = SemLaserScan(nclasses, CFG["color_map"], project=False)
for idx in range(len(scan_names)):
# open scan
print(label_names[idx])
scan.open_scan(scan_names[idx])
scan.open_label(label_names[idx])
# make histogram and accumulate
count = np.bincount(scan.sem_label)
seq_total += count.sum()
for key, data in seq_accum.items():
if count.size > key:
seq_accum[key] += count[key]
# zero the count
count[key] = 0
for i, c in enumerate(count):
if c > 0:
print("wrong label ", i, ", nr: ", c)
seq_accum = collections.OrderedDict(
sorted(seq_accum.items(), key=lambda t: t[0]))
# print and send to total
total += seq_total
print("seq ", seqstr, "total", seq_total)
for key, data in seq_accum.items():
accum[key] += data
print(data)
# print content to fill yaml file
print("*" * 80)
print("Content in training set")
print(accum)
accum = collections.OrderedDict(sorted(accum.items(), key=lambda t: t[0]))
for key, data in accum.items():
print(" {}: {}".format(key, data / total))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。