1 Star 0 Fork 0

fangyidong/pbl

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
superstroe.py 6.28 KB
一键复制 编辑 原始数据 按行查看 历史
fangyidong 提交于 2024-05-28 08:49 . first commit
import streamlit as st
import plotly.express as px
import pandas as pd
import os
import warnings
warnings.filterwarnings('ignore')
st.set_page_config(page_title="Superstore!!!",
page_icon=":bar_chart:",
layout="wide")
st.title(" :bar_chart: Sample SuperStore EDA")
st.markdown('<style>div.block-container{padding-top:1rem;}</style>',unsafe_allow_html=True)
fl = st.file_uploader(":file_folder: 😊🖼️Upload a file", type=(["csv", "txt", "xlsx", "xls"]))
if fl is not None:
filename = fl.name
st.write(filename)
df = pd.read_csv(os.getcwd() + "/data/" + filename, encoding="ISO-8859-1")
else:
df = pd.read_csv(os.getcwd() + "\data\Superstore.csv", encoding="ISO-8859-1")
df["Order Date"] = pd.to_datetime(df["Order Date"])
startDate = df["Order Date"].min()
endDate = pd.to_datetime(df["Order Date"]).max()
col1, col2 = st.columns((2))
with col1:
date1 = pd.to_datetime(st.date_input("Start Date", startDate))
with col2:
date2 = pd.to_datetime(st.date_input("End Date", endDate))
df = df[(df["Order Date"] >= date1) & (df["Order Date"] <= date2)].copy()
st.sidebar.header("Choose your filter: ")
# Create for Region
region = st.sidebar.multiselect("Pick your Region", df["Region"].unique())
if not region:
df2 = df.copy()
else:
df2 = df[df["Region"].isin(region)]
# Create for State
state = st.sidebar.multiselect("Pick the State", df2["State"].unique())
if not state:
df3 = df2.copy()
else:
df3 = df2[df2["State"].isin(state)]
# Create for City
city = st.sidebar.multiselect("Pick the City",df3["City"].unique())
if not region and not state and not city:
filtered_df = df
elif not state and not city:
filtered_df = df[df["Region"].isin(region)]
elif not region and not city:
filtered_df = df[df["State"].isin(state)]
elif state and city:
filtered_df = df3[df["State"].isin(state) & df3["City"].isin(city)]
elif region and city:
filtered_df = df3[df["Region"].isin(region) & df3["City"].isin(city)]
elif region and state:
filtered_df = df3[df["Region"].isin(region) & df3["State"].isin(state)]
elif city:
filtered_df = df3[df3["City"].isin(city)]
else:
filtered_df = df3[df3["Region"].isin(region) & df3["State"].isin(state) & df3["City"].isin(city)]
# st.dataframe(filtered_df)
# with col1:
# category_df = df.groupby(by=["Category"], as_index=False)["Sales"].sum()
# fig = px.bar(category_df, x="Category", y="Sales", text=['${:,.2f}'.format(x) for x in category_df["Sales"]], template="seaborn")
# st.plotly_chart(fig, use_container_width=True, height=200)
# with col2:
# fig = px.pie(df, values="Sales", names="Region", hole=0.5)
# fig.update_traces(text=df["Region"], textposition="outside")
# st.plotly_chart(fig, use_container_width=True)
category_df = filtered_df.groupby(by = ["Category"], as_index = False)["Sales"].sum()
with col1:
st.subheader("Category wise Sales")
fig = px.bar(category_df, x = "Category", y = "Sales", text = ['${:,.2f}'.format(x) for x in category_df["Sales"]],
template = "seaborn")
st.plotly_chart(fig,use_container_width=True, height = 200)
with col2:
st.subheader("Region wise Sales")
fig = px.pie(filtered_df, values = "Sales", names = "Region", hole = 0.5)
fig.update_traces(text = filtered_df["Region"], textposition = "outside")
st.plotly_chart(fig,use_container_width=True)
cl1, cl2 = st.columns((2))
with cl1:
with st.expander("Category_ViewData"):
st.write(category_df.style.background_gradient(cmap="Blues"))
csv = category_df.to_csv(index = False).encode('utf-8')
st.download_button("Download Data", data = csv, file_name = "Category.csv", mime = "text/csv",
help = 'Click here to download the data as a CSV file')
with cl2:
with st.expander("Region_ViewData"):
region = filtered_df.groupby(by = "Region", as_index = False)["Sales"].sum()
st.write(region.style.background_gradient(cmap="Oranges"))
csv = region.to_csv(index = False).encode('utf-8')
st.download_button("Download Data", data = csv, file_name = "Region.csv", mime = "text/csv",
help = 'Click here to download the data as a CSV file')
filtered_df["month_year"] = filtered_df["Order Date"].dt.to_period("M")
st.subheader('Time Series Analysis')
linechart = pd.DataFrame(filtered_df.groupby(filtered_df["month_year"].dt.strftime("%Y : %b"))["Sales"].sum()).reset_index()
fig2 = px.line(linechart, x = "month_year", y="Sales", labels = {"Sales": "Amount"},height=500, width = 1000,template="gridon")
st.plotly_chart(fig2,use_container_width=True)
with st.expander("View Data of TimeSeries:"):
st.write(linechart.T.style.background_gradient(cmap="Blues"))
csv = linechart.to_csv(index=False).encode("utf-8")
st.download_button('Download Data', data = csv, file_name = "TimeSeries.csv", mime ='text/csv')
st.subheader("Hierarchical view of Sales using TreeMap")
fig3 = px.treemap(filtered_df, path = ["Region","Category","Sub-Category"], values = "Sales",hover_data = ["Sales"],
color = "Sub-Category")
fig3.update_layout(width = 800, height = 650)
st.plotly_chart(fig3, use_container_width=True)
import plotly.figure_factory as ff
st.subheader(":point_right: Month wise Sub-Category Sales Summary")
with st.expander("Summary_Table"):
df_sample = df[0:5][["Region","State","City","Category","Sales","Profit","Quantity"]]
fig = ff.create_table(df_sample, colorscale = "Cividis")
st.plotly_chart(fig, use_container_width=True)
st.markdown("Month wise sub-Category Table")
filtered_df["month"] = filtered_df["Order Date"].dt.month_name()
sub_category_Year = pd.pivot_table(data = filtered_df, values = "Sales", index = ["Sub-Category"],columns = "month")
st.write(sub_category_Year.style.background_gradient(cmap="Blues"))
# Create a scatter plot
data1 = px.scatter(filtered_df, x = "Sales", y = "Profit", size = "Quantity")
data1['layout'].update(title="Relationship between Sales and Profits using Scatter Plot.",
titlefont = dict(size=20),xaxis = dict(title="Sales",titlefont=dict(size=19)),
yaxis = dict(title = "Profit", titlefont = dict(size=19)))
st.plotly_chart(data1,use_container_width=True)
with st.expander("View Data"):
st.write(filtered_df.iloc[:500,1:20:2].style.background_gradient(cmap="Oranges"))
# Download orginal DataSet
csv = df.to_csv(index = False).encode('utf-8')
st.download_button('Download Data', data = csv, file_name = "Data.csv",mime = "text/csv")
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/fun1dong/pbl.git
git@gitee.com:fun1dong/pbl.git
fun1dong
pbl
pbl
master

搜索帮助