本项目使用FAISS库实现了基于K近邻的图像分类器。该分类器可以使用CPU或GPU进行训练,并支持两种特征提取方法:flat和vgg。用户可以选择使用sklearn或faiss库实现K近邻算法。
本项目使用FAISS库实现了基于K近邻的图像分类器。该分类器可以使用CPU或GPU进行训练,并支持两种特征提取方法:flat和vgg。用户可以选择使用sklearn或faiss库实现K近邻算法。
本项目使用FAISS库实现了基于K近邻的图像分类器。该分类器可以使用CPU或GPU进行训练,并支持两种特征提取方法:flat和vgg。用户可以选择使用sklearn或faiss库实现K近邻算法。
这个项目是一个文档扫描仪应用程序,使用Python编写。它可以帮助用户加载图片并裁剪文档,提供方便的文档扫描功能。
本项目使用gradio应用在 minist 上训练的最有 KNN 模型就行手写数字识别。
使用Python和Tkinter创建一个简单的图形用户界面,可以调整图像的亮度和对比度,并显示调整后的直方图。
此作业包含一系列的Python代码,用于处理和分析图像。
Contributions last year: 19
Max continuous contributions: 2
Recent contributions: 1
Commits, issues, and pull requests will appear on your contribution graph. Only when the email address used for the commits in local configuration is associated with your GitOSC account, the commits' contribution will be counted.