代码拉取完成,页面将自动刷新
import numpy as np
import cv2
import math
from scipy import signal
def Hessian2D(I,Sigma):
#求输入图像的Hessian矩阵
#实际上中间包含了高斯滤波,因为二阶导数对噪声非常敏感
#输入:
# I : 单通道double类型图像
# Sigma : 高斯滤波卷积核的尺度
#
# 输出 : Dxx, Dxy, Dyy: 图像的二阶导数
if Sigma<1:
print("error: Sigma<1")
return -1
I=np.array(I,dtype=float)
Sigma=np.array(Sigma,dtype=float)
S_round=np.round(3*Sigma)
[X,Y]= np.mgrid[-S_round:S_round+1,-S_round:S_round+1]
#构建卷积核:高斯函数的二阶导数
DGaussxx = 1/(2*math.pi*pow(Sigma,4)) * (X**2/pow(Sigma,2) - 1) * np.exp(-(X**2 + Y**2)/(2*pow(Sigma,2)))
DGaussxy = 1/(2*math.pi*pow(Sigma,6)) * (X*Y) * np.exp(-(X**2 + Y**2)/(2*pow(Sigma,2)))
DGaussyy = 1/(2*math.pi*pow(Sigma,4)) * (Y**2/pow(Sigma,2) - 1) * np.exp(-(X**2 + Y**2)/(2*pow(Sigma,2)))
Dxx = signal.convolve2d(I,DGaussxx,boundary='fill',mode='same',fillvalue=0)
Dxy = signal.convolve2d(I,DGaussxy,boundary='fill',mode='same',fillvalue=0)
Dyy = signal.convolve2d(I,DGaussyy,boundary='fill',mode='same',fillvalue=0)
return Dxx,Dxy,Dyy
def eig2image(Dxx,Dxy,Dyy):
# This function eig2image calculates the eigen values from the
# hessian matrix, sorted by abs value. And gives the direction
# of the ridge (eigenvector smallest eigenvalue) .
# input:Dxx,Dxy,Dyy图像的二阶导数
# output:Lambda1,Lambda2,Ix,Iy
#Compute the eigenvectors of J, v1 and v2
Dxx=np.array(Dxx,dtype=float)
Dyy=np.array(Dyy,dtype=float)
Dxy=np.array(Dxy,dtype=float)
if (len(Dxx.shape)!=2):
print("len(Dxx.shape)!=2,Dxx不是二维数组!")
return 0
tmp = np.sqrt( (Dxx - Dyy)**2 + 4*Dxy**2)
v2x = 2*Dxy
v2y = Dyy - Dxx + tmp
mag = np.sqrt(v2x**2 + v2y**2)
i=np.array(mag!=0)
v2x[i==True] = v2x[i==True]/mag[i==True]
v2y[i==True] = v2y[i==True]/mag[i==True]
v1x = -v2y
v1y = v2x
mu1 = 0.5*(Dxx + Dyy + tmp)
mu2 = 0.5*(Dxx + Dyy - tmp)
check=abs(mu1)>abs(mu2)
Lambda1=mu1.copy()
Lambda1[check==True] = mu2[check==True]
Lambda2=mu2
Lambda2[check==True] = mu1[check==True]
Ix=v1x
Ix[check==True] = v2x[check==True]
Iy=v1y
Iy[check==True] = v2y[check==True]
return Lambda1,Lambda2,Ix,Iy
def FrangiFilter2D(I):
I=np.array(I,dtype=float)
defaultoptions = {'FrangiScaleRange':(1,10), 'FrangiScaleRatio':2, 'FrangiBetaOne':0.5, 'FrangiBetaTwo':15, 'verbose':True,'BlackWhite':True};
options=defaultoptions
sigmas=np.arange(options['FrangiScaleRange'][0],options['FrangiScaleRange'][1],options['FrangiScaleRatio'])
sigmas.sort()#升序
beta = 2*pow(options['FrangiBetaOne'],2)
c = 2*pow(options['FrangiBetaTwo'],2)
#存储滤波后的图像
shape=(I.shape[0],I.shape[1],len(sigmas))
ALLfiltered=np.zeros(shape)
ALLangles =np.zeros(shape)
#Frangi filter for all sigmas
Rb=0
S2=0
for i in range(len(sigmas)):
#Show progress
if(options['verbose']):
print('Current Frangi Filter Sigma: ',sigmas[i])
#Make 2D hessian
[Dxx,Dxy,Dyy] = Hessian2D(I,sigmas[i])
#Correct for scale
Dxx = pow(sigmas[i],2)*Dxx
Dxy = pow(sigmas[i],2)*Dxy
Dyy = pow(sigmas[i],2)*Dyy
#Calculate (abs sorted) eigenvalues and vectors
[Lambda2,Lambda1,Ix,Iy]=eig2image(Dxx,Dxy,Dyy)
#Compute the direction of the minor eigenvector
angles = np.arctan2(Ix,Iy)
#Compute some similarity measures
Lambda1[Lambda1==0] = np.spacing(1)
Rb = (Lambda2/Lambda1)**2
S2 = Lambda1**2 + Lambda2**2
#Compute the output image
Ifiltered = np.exp(-Rb/beta) * (np.ones(I.shape)-np.exp(-S2/c))
#see pp. 45
if(options['BlackWhite']):
Ifiltered[Lambda1<0]=0
else:
Ifiltered[Lambda1>0]=0
#store the results in 3D matrices
ALLfiltered[:,:,i] = Ifiltered
ALLangles[:,:,i] = angles
# Return for every pixel the value of the scale(sigma) with the maximum
# output pixel value
if len(sigmas) > 1:
outIm=ALLfiltered.max(2)
else:
outIm = (outIm.transpose()).reshape(I.shape)
return outIm
if __name__ == "__main__":
imagename=‘your pic’s name‘
image=cv2.imread(imagename,0)
blood = cv2.normalize(image.astype('double'), None, 0.0, 1.0, cv2.NORM_MINMAX) # Convert to normalized floating point
outIm=FrangiFilter2D(blood)
img=outIm*(10000)
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。