1 Star 0 Fork 0

暮里残阳/DFANet

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
train.py 12.47 KB
一键复制 编辑 原始数据 按行查看 历史
shenhuxiang 提交于 2019-04-28 11:43 . adjust lr poly
# --------------------------------------------------------
# Licensed under The MIT License [see LICENSE for details]
# Written by SHEN HUIXIANG (shhuixi@qq.com)
# Created On: 2018-12-01
# --------------------------------------------------------
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import os
import datetime
from tensorboardX import SummaryWriter
import time
import sys, time
import torch.nn.functional as F
from utils.metrics import compute_iou_batch
import numpy as np
class Trainer(object):
def __init__(self, mode, optim, scheduler, model, config, model_dir):
assert mode in ['training', 'inference']
self.mode = mode
self.model = model
self.cuda = torch.cuda.is_available()
self.model_dir = model_dir
self.optim = optim
self.epoch = 0
self.config = config
self.scheduler = scheduler
self.set_log_dir()
def train(self, train_loader, val_loader, loss_function, num_epochs):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dataloaders = {'train': train_loader, 'val': val_loader}
writer = SummaryWriter(log_dir=self.log_dir)
self.model = self.model.to(device)
for epoch in range(self.epoch, num_epochs):
since = time.time()
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
for phase in ['train', 'val']:
if phase == 'train':
self.model.train()
else:
self.model.eval()
running_loss = 0.0
bar_steps = len(dataloaders[phase])
process_bar = ShowProcess(bar_steps)
total = 0
ious = []
#########################################################
#
#########################################################
for i, data in enumerate(dataloaders[phase], 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
self.optim.zero_grad()
#forward
#track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = self.model(inputs)
loss = loss_function(outputs, labels)
#preds = F.interpolate(outputs[0], size=labels.size()[2:], mode='bilinear', align_corners=True)
preds_np=outputs.detach().cpu().numpy()
labels_np = labels.detach().cpu().numpy().squeeze()
iou = compute_iou_batch(preds_np, labels_np)
ious.append(iou)
#backward+optimize only if in training phase
if phase == 'train':
loss.backward()
self.optim.step()
if self.scheduler:
#self.scheduler.step(loss.cpu().data.numpy())
self.scheduler.step()
# statistics
total += inputs.size(0)
running_loss += loss.item() * inputs.size(0)
process_bar.show_process()
process_bar.close()
epoch_loss = running_loss / total
iou=np.mean(ious)
print('{} Loss: {:.4f} iou:{:.4f} '.format(phase, epoch_loss,iou))
writer.add_scalar('{}_loss'.format(phase), epoch_loss, epoch)
writer.add_scalar('{}_iou'.format(phase),iou,epoch)
time_elapsed = time.time() - since
print('one epoch complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
##############################################################
# save the model for every epoch #
##############################################################
torch.save({
'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optim.state_dict(),
'lr_scheduler': self.scheduler.state_dict(),
'loss': loss
}, self.checkpoint_path.format(epoch))
writer.close()
print("train finished")
def set_log_dir(self, model_path=None):
"""Set the model log directory and epoch counter.
model_path:If None ,or a format different form what this code uses then set a new
log directory and start epochs from 0. Otherwise,extract the log directory and
the epoch counter form the file name.
"""
if self.mode == 'training':
now = datetime.datetime.now()
#if we hanbe a model path with date and epochs use them
if model_path:
# Continue form we left of .Get epoch and date form the file name
# A sample model path might look like:
#/path/to/logs/coco2017.../DeFCN_0001.h5
import re
regex = r".*/[\w-]+(\d{4})(\d{2})(\d{2})T(\d{2})(\d{2})/model\_[\w-]+(\d{4})\.pt"
m = re.match(regex, model_path)
if m:
now = datetime.datetime(
int(m.group(1)), int(m.group(2)), int(m.group(3)),
int(m.group(4)), int(m.group(5)))
# Epoch number in file is 1-based, and in Keras code it's 0-based.
# So, adjust for that then increment by one to start from the next epoch
#self.epoch = int(m.group(6)) + 1
print('Re-starting from epoch %d' % self.epoch)
# Directory for training logs
self.log_dir = os.path.join(
self.model_dir, "{}{:%Y%m%dT%H%M}".format(
self.config.NAME.lower(), now))
# Create log_dir if not exists
if not os.path.exists(self.log_dir):
os.makedirs(self.log_dir)
# Path to save after each epoch. Include placeholders that get filled by Keras.
self.checkpoint_path = os.path.join(
self.log_dir,
"model_{}_*epoch*.pt".format(self.config.NAME.lower()))
self.checkpoint_path = self.checkpoint_path.replace(
"*epoch*", "{:04d}")
def find_last(self,num=-1):
"""Finds the last checkpoint file of the last trained model in the
model directory.
Returns:
the path of the last checkpoint file
"""
# Get directory names. Each directory corresponds to a model
dir_names = next(os.walk(self.model_dir))[1]
key = self.config.NAME.lower()
dir_names = filter(lambda f: f.startswith(key), dir_names)
dir_names = sorted(dir_names)
if not dir_names:
import errno
raise FileNotFoundError(
errno.ENOENT, "Could not find model directory under {}".format(
self.model_dir))
# Pick last directory
if self.mode == 'training':
dir_name = os.path.join(self.model_dir, dir_names[-2])
print(dir_name)
os.rmdir(os.path.join(self.model_dir, dir_names[-1]))
else:
dir_name = os.path.join(self.model_dir, dir_names[-1])
# Find the last checkpoint
checkpoints = next(os.walk(dir_name))[2]
checkpoints = filter(lambda f: f.startswith("model"), checkpoints)
checkpoints = sorted(checkpoints)
if not checkpoints:
import errno
raise FileNotFoundError(
errno.ENOENT,
"Could not find weight files in {}".format(dir_name))
checkpoint = os.path.join(dir_name, checkpoints[num])
return checkpoint
def load_weights(self, file_path, by_name=False, exclude=None):
"""load the weights from the file_path in CNN model.
"""
checkpoint = torch.load(file_path)
self.model.load_state_dict(checkpoint['model_state_dict'])
#when loading a model on a GPU that was trained and saved on GPU,you
#should convert the initialized model to a CUDA optimized model using
#model.to(torch.device("cuda"))
if self.cuda:
self.device = torch.device("cuda")
self.model.to(self.device)
self.optim.load_state_dict(checkpoint['optimizer_state_dict'])
self.scheduler.load_state_dict(checkpoint['lr_scheduler'])
self.epoch = checkpoint['epoch'] + 1
self.loss = checkpoint['loss']
self.set_log_dir(file_path)
print("load weights from {} finished.".format(file_path))
def detect(self, image):
"""Runs the detection pipeline.
images: List of images, potentially of different sizes.
Returns a mask of image.
"""
import numpy as np
assert self.mode == "inference", "Create model in inference mode."
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.model.eval()
with torch.no_grad():
image=image.transpose((2, 0, 1))
inputs = torch.Tensor(image)
inputs = torch.unsqueeze(inputs,0)
inputs = inputs.to(device)
outputs = self.model(inputs)
outputs = torch.nn.functional.sigmoid(outputs)
outputs = outputs.to('cpu')
#preds = torch.round(outputs)
preds=outputs
preds = torch.squeeze(preds, 0)
#preds = preds.transpose(2,0)
preds = torch.squeeze(preds,0)
preds=preds.numpy()
return preds
def evaluate(self, val_laoder):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
aTP=0
aFP=0
aTN=0
aFN=0
with torch.no_grad():
bar_steps = len(val_laoder)
process_bar = ShowProcess(bar_steps)
for data in val_laoder:
inputs, labels = data['image'], data['gt_map']
inputs, labels = inputs.to(device), labels.to(device)
outputs = self.model(inputs)
preds = torch.round(F.sigmoid(outputs))
FP=preds-labels
FP=torch.where(FP==1,FP,torch.zeros(preds.size()).to(device))
TP=preds-FP
FN=labels-TP
TN=1-FN-FP-TP
aTP=torch.sum(TP)+aTP
aFP=torch.sum(FP)+aFP
aTN=torch.sum(TN)+aTN
aFN=torch.sum(FN)+aFN
process_bar.show_process()
process_bar.close()
P=aTP/(aTP+aFP)
R=aTP/(aTP+aFN)
F1=2*P*R/(P+R)
Mr=(aFP+aFN)/(aTP+aTN+aFN+aFP)
Acc=(aTP+aTN)/(aTP+aTN+aFN+aFP)
print(' P:{:.4} R:{:.4} F1:{:.4} Mr:{:.4} Acc:{:.4}'.format(P, R, F1, Mr,Acc))
class ShowProcess():
"""
显示处理进度的类
调用该类相关函数即可实现处理进度的显示
"""
i = 0 # 当前的处理进度
max_steps = 0 # 总共需要处理的次数
max_arrow = 50 #进度条的长度
# 初始化函数,需要知道总共的处理次数
def __init__(self, max_steps):
self.max_steps = max_steps
self.i = 0
# 显示函数,根据当前的处理进度i显示进度
# 效果为[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>]100.00%
def show_process(self, i=None):
if i is not None:
self.i = i
else:
self.i += 1
num_arrow = int(self.i * self.max_arrow / self.max_steps) #计算显示多少个'>'
num_line = self.max_arrow - num_arrow #计算显示多少个'-'
percent = self.i * 100.0 / self.max_steps #计算完成进度,格式为xx.xx%
process_bar = '[' + '>' * num_arrow + '-' * num_line + ']'\
+ '%.2f' % percent + '%' + '\r' #带输出的字符串,'\r'表示不换行回到最左边
sys.stdout.write(process_bar) #这两句打印字符到终端
sys.stdout.flush()
def close(self, words='done'):
print('')
#print(words)
self.i = 0
if __name__ == "__main__":
"""Here is an example to show how to impliement the class trainer."""
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/feng1063200037/DFANet.git
git@gitee.com:feng1063200037/DFANet.git
feng1063200037
DFANet
DFANet
master

搜索帮助