代码拉取完成,页面将自动刷新
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
import torch
import numpy as np
from torch.nn import functional as F
from torch.autograd import Variable
from loss import OhemCrossEntropy2d
import scipy.ndimage as nd
class CriterionDSN(nn.Module):
'''
DSN : We need to consider two supervision for the model.
'''
def __init__(self, ignore_index=255, use_weight=True, reduce=True):
super(CriterionDSN, self).__init__()
self.ignore_index = ignore_index
self.criterion = torch.nn.CrossEntropyLoss(ignore_index=ignore_index, reduction='mean')
if not reduce:
print("disabled the reduce.")
def forward(self, preds, target):
h, w = target.size(1), target.size(2)
scale_pred = F.interpolate(input=preds[0], size=(h, w), mode='bilinear', align_corners=True)
loss1 = self.criterion(scale_pred, target)
scale_pred = F.interpolate(input=preds[1], size=(h, w), mode='bilinear', align_corners=True)
loss2 = self.criterion(scale_pred, target)
return loss1 + loss2*0.4
class CriterionOhemDSN(nn.Module):
'''
DSN : We need to consider two supervision for the model.
'''
def __init__(self, ignore_index=255, thresh=0.7, min_kept=100000, use_weight=True, reduce=True):
super(CriterionOhemDSN, self).__init__()
self.ignore_index = ignore_index
self.criterion1 = OhemCrossEntropy2d(ignore_index, thresh, min_kept)
self.criterion2 = torch.nn.CrossEntropyLoss(ignore_index=ignore_index, reduce=reduce)
def forward(self, preds, target):
h, w = target.size(1), target.size(2)
scale_pred = F.interpolate(input=preds[0], size=(h, w), mode='bilinear', align_corners=True)
loss1 = self.criterion1(scale_pred, target)
scale_pred = F.interpolate(input=preds[1], size=(h, w), mode='bilinear', align_corners=True)
loss2 = self.criterion2(scale_pred, target)
return loss1 + loss2*0.4
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。