代码拉取完成,页面将自动刷新
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import numpy as np
import time
import traceback
import sys
sys.path.append('code')
import ml_model
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
#sector name
parser.add_argument('-sector_name','--sector_name_input', type=str, required=True,help='sector name: i.e. sector10')
# file name
parser.add_argument('-fundamental','--fundamental_input', type=str, required=True,help='inputfile name for fundamental table')
parser.add_argument('-sector','--sector_input', type=str, required=True,help='inputfile name for individual sector')
# rolling window variables
parser.add_argument("-first_trade_index", default=20, type=int)
parser.add_argument("-testing_window", default=4, type=int)
# column name
parser.add_argument("-label_column", default='y_return', type=str)
parser.add_argument("-date_column", default='date', type=str)
parser.add_argument("-tic_column", default='tic', type=str)
parser.add_argument("-no_feature_column_names", default = ['gvkey', 'tic', 'datadate', 'rdq', 'datadate', 'fyearq', 'fqtr',
'conm', 'datacqtr', 'datafqtr', 'gsector','y_return'], type=list,help='column names that are not fundamental features')
args = parser.parse_args()
#load fundamental table
inputfile_fundamental = args.fundamental_input
fundamental_total=pd.read_csv(inputfile_fundamental)
# fundamental_total=fundamental_total[fundamental_total['tradedate'] < 20170901]
#get all unique quarterly date
# load sector data
inputfile_sector = args.sector_input
sector_data=pd.read_excel(inputfile_sector)
unique_datetime = sorted(sector_data.date.unique())
#get sector unique ticker
unique_ticker=sorted(sector_data[args.tic_column].unique())
#set rolling window
# train: 4 years = 16 quarters
# test: 1 year = 4 quarters
# so first trade date = #20 quarter
#first trade date is 1995-06-01
first_trade_date_index=args.first_trade_index
#testing window
testing_windows = args.testing_window
#get all backtesting period trade dates
trade_date=unique_datetime[first_trade_date_index:]
#variable column name
label_column = args.label_column
date_column = args.date_column
tic_column = args.tic_column
# features column: different base on sectors
no_feature_column_names = args.no_feature_column_names
features_column = [x for x in sector_data.columns.values if (x not in no_feature_column_names) and (np.issubdtype(sector_data[x].dtype, np.number) and(not np.any(np.isnan(sector_data[x]))))]
#sector name
sector_name = args.sector_name_input
try:
start = time.time()
model_result=ml_model.run_4model(sector_data,
features_column,
label_column,
date_column,
tic_column,
unique_ticker,
unique_datetime,
trade_date,
first_trade_date_index,
testing_windows)
end = time.time()
print('Time Spent: ',(end-start)/60,' minutes')
ml_model.save_model_result(model_result,sector_name)
except e:
print(e)
# python3 fundamental_run_model.py -sector_name sector10 -fundamental Data/fundamental_final_table.xlsx -sector Data/1-focasting_data/sector10_clean.xlsx
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。