代码拉取完成,页面将自动刷新
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 27 18:22:43 2018
@author: PavitrakumarPC
"""
import keras
import numpy as np
import cv2
import os
import pandas as pd
import matplotlib.pyplot as plt
from keras.layers import Conv2D, Dense, Input, Dropout, Flatten, Activation, MaxPooling2D, AveragePooling2D, BatchNormalization
from keras.models import Sequential, Model
from keras.optimizers import Adam, SGD, RMSprop
from keras import backend as K
from keras.utils.np_utils import to_categorical
from keras.models import load_model
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ModelCheckpoint
from keras.models import model_from_json
import json
from sklearn.cross_validation import train_test_split
K.set_image_dim_ordering('tf')
def decode_nn_res(res_vec, num_digits, num_classes, dummy_class):
digits = np.array_split(res_vec, num_digits)
actual_digits = np.argmax(digits,1)+1
res = actual_digits[actual_digits!=dummy_class]
return res, ''.join(map(str, res))
def process_labels(labels,max_digits):
tmp = []
for label in labels:
vec = [int(float(x)) for x in label.split('_')]
if len(vec) < max_digits:
vec = vec + [11]*(max_digits-len(vec))
tmp.append(vec)
labels = np.array(tmp)
tmp = []
num_classes = 11
for target in labels[:,...]:
y = np.zeros((len(target), num_classes))
y[np.arange(target.shape[0]), target-1] = 1
tmp.append(y)
labels = np.array(tmp)
return labels
def standardize(img):
s = img - np.mean(img, axis=(2,0,1), keepdims=True)
s /= (np.std(s, axis=(2,0,1), keepdims=True) + 1e-7)
return s
root_dir = ''
train_data = pd.read_hdf(os.path.join(root_dir,'data','train_data_processed.h5'),'table')
train_data = train_data[(train_data['num_digits']!=6) & (train_data['num_digits']!=5)]
#we slightly shift each image in 4 directions to make the classifier more robust
#so, below quadruples the dataset we have
#this takes a long time to complete!
extra_data = pd.DataFrame(columns = train_data.columns)
for index, row in train_data.iterrows():
c_row = row.copy()
c_row['left'] = c_row['left']-5
c_row['right'] = c_row['right']-5
c_row['width'] = c_row['right'] - c_row['left']
c_row['cut_img'] = c_row['img'].copy()[int(c_row['top']):int(c_row['top']+c_row['height']),int(c_row['left']):int(c_row['left']+c_row['width']),...]
extra_data = extra_data.append(c_row, ignore_index=True)
c_row = row.copy()
c_row['left'] = c_row['left']+5
c_row['right'] = c_row['right']+5
c_row['width'] = c_row['right'] - c_row['left']
c_row['cut_img'] = c_row['img'].copy()[int(c_row['top']):int(c_row['top']+c_row['height']),int(c_row['left']):int(c_row['left']+c_row['width']),...]
extra_data = extra_data.append(c_row, ignore_index=True)
c_row = row.copy()
c_row['top'] = c_row['top']-5
c_row['bottom'] = c_row['bottom']-5
c_row['height'] = c_row['bottom'] - c_row['top']
c_row['cut_img'] = c_row['img'].copy()[int(c_row['top']):int(c_row['top']+c_row['height']),int(c_row['left']):int(c_row['left']+c_row['width']),...]
extra_data = extra_data.append(c_row, ignore_index=True)
c_row = row.copy()
c_row['top'] = c_row['top']+5
c_row['bottom'] = c_row['bottom']+5
c_row['height'] = c_row['bottom'] - c_row['top']
c_row['cut_img'] = c_row['img'].copy()[int(c_row['top']):int(c_row['top']+c_row['height']),int(c_row['left']):int(c_row['left']+c_row['width']),...]
extra_data = extra_data.append(c_row, ignore_index=True)
if (index%1000)==0:
print(str(index)+'/'+str(train_data.shape[0])+' done')
train_data = pd.concat([train_data,extra_data])
#training
num_digits = 4
train_img_size = (64,64)
train_labels = process_labels(np.array(train_data['labels']),num_digits) #don't use [['labels']]
tmp = []
sel_indices = []
train_images = train_data['cut_img'] #img or cut_img
for index,img in enumerate(train_images):
#some images have very small dims because of image aug step we did previously
if img.shape[0]>=8 and img.shape[1]>=3:
tmp.append(cv2.resize(img,train_img_size))
sel_indices.append(index)
train_images = np.array(tmp)
train_labels = train_labels[sel_indices,...]
#del train_data, tmp
single_img_shape = train_images[0].shape
k_size = 7
cnn3 = Input(shape=single_img_shape)
layer = Conv2D(48, k_size,k_size, border_mode='same')(cnn3)
layer = BatchNormalization()(layer)
layer = Activation('tanh')(layer)
layer = MaxPooling2D(pool_size=(2, 2), strides = 2) (layer)
layer = Dropout(0.2)(layer)
layer = Conv2D(64, k_size,k_size, border_mode='same')(cnn3)
layer = BatchNormalization()(layer)
layer = Activation('tanh')(layer)
layer = MaxPooling2D(pool_size=(2, 2), strides = 2) (layer)
layer = Dropout(0.2)(layer)
layer = Conv2D(64, k_size,k_size, border_mode='same')(cnn3)
layer = BatchNormalization()(layer)
layer = Activation('tanh')(layer)
layer = MaxPooling2D(pool_size=(2, 2), strides = 2) (layer)
layer = Dropout(0.2)(layer)
layer = Conv2D(128, k_size,k_size, border_mode='same')(layer)
layer = BatchNormalization()(layer)
layer = Activation('tanh')(layer)
layer = MaxPooling2D(pool_size=(2, 2)) (layer)
layer = Dropout(0.2)(layer)
layer = Conv2D(192, k_size,k_size, border_mode='same')(layer)
layer = BatchNormalization()(layer)
layer = Activation('tanh')(layer)
layer = MaxPooling2D(pool_size=(2, 2)) (layer)
layer = Dropout(0.2)(layer)
layer = Conv2D(256, k_size,k_size, border_mode='same')(layer)
layer = BatchNormalization()(layer)
layer = Activation('tanh')(layer)
layer = MaxPooling2D(pool_size=(2, 2)) (layer)
layer = Dropout(0.2)(layer)
layer = Conv2D(256, k_size,k_size, border_mode='same')(layer)
layer = BatchNormalization()(layer)
layer = Activation('tanh')(layer)
layer = MaxPooling2D(pool_size=(2, 2)) (layer)
layer = Dropout(0.2)(layer)
layer = Flatten()(layer)
layer = Dense(1024, activation="tanh")(layer)
layer = Dropout(0.2)(layer)
#output
d1 = Dense(11, activation='softmax')(layer)
d2 = Dense(11, activation='softmax')(layer)
d3 = Dense(11, activation='softmax')(layer)
d4 = Dense(11, activation='softmax')(layer)
model = Model(cnn3, [d1,d2,d3,d4])
optim = RMSprop(lr=0.00005)
model.compile(loss='categorical_crossentropy', optimizer=optim, metrics=['accuracy'])
model.fit(train_images, [train_labels[:,ind,:] for ind in range(num_digits)], epochs=50, batch_size=64, validation_split=0.05, verbose=1, shuffle=True)
preds = model.predict(train_images[5001:5500,...])
score = np.concatenate(preds, axis=1)
round_score = np.zeros(score.shape, dtype="int32")
round_score[score > 0.5] = 1
tmp = []
for vec in train_labels[5001:5500,...]:
tmp.append(np.concatenate(vec,0))
ac_score = np.array(tmp)
print('prediction accuracy',1-(np.sum(np.abs(round_score-ac_score))/float(round_score.shape[0]*round_score.shape[1]))) #1.0
pred_digits = np.array([decode_nn_res(x,num_digits,11,11)[1] for x in round_score])
actual_digits = np.array([decode_nn_res(x,num_digits,11,11)[1] for x in ac_score])
print('acc',np.sum(pred_digits==actual_digits)/float(pred_digits.shape[0])) #1.0
#~~~~~~~~~~~~~~~~~~~~~~~~~~testing~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
test_data = pd.read_hdf(os.path.join(root_dir,'data','test_data_processed.h5'),'table')
test_data = test_data[(test_data['num_digits']!=6) & (test_data['num_digits']!=5)]
num_digits = 4
test_img_size = (64,64)
test_labels = process_labels(np.array(test_data['labels']),num_digits) #don't use [['labels']]
tmp = []
test_images = test_data['cut_img'] #img or cut_img
for img in test_images:
tmp.append(cv2.resize(img,test_img_size))
test_images = np.array(tmp)
preds = model.predict(test_images)
score = np.concatenate(preds, axis=1)
round_score = np.zeros(score.shape, dtype="int32")
round_score[score > 0.5] = 1
tmp = []
for vec in test_labels:
tmp.append(np.concatenate(vec,0))
ac_score = np.array(tmp)
print('prediction accuracy',1-(np.sum(np.abs(round_score-ac_score))/float(round_score.shape[0]*round_score.shape[1]))) #0.988
pred_digits = np.array([decode_nn_res(x,num_digits,11,11)[1] for x in round_score])
actual_digits = np.array([decode_nn_res(x,num_digits,11,11)[1] for x in ac_score])
print('acc',np.sum(pred_digits==actual_digits)/float(pred_digits.shape[0])) #0.80
#~~~~~~~~~~~~~~~~~~~~~~~~~~~saving~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Architecture
with open(os.path.join(root_dir,'cnn_models','digit_classification_cnn_layers.json',"r"),"w") as f:
f.write(model.to_json())
f.close()
# Weights
model.save_weights(os.path.join(root_dir,'cnn_models','digit_classification_cnn_weights.h5'))
#model.save(os.path.join(root_dir,'cnn_models','digit_classification_cnn_fullmodel.h5'))
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。