代码拉取完成,页面将自动刷新
"""
This is a script to test our malicious prompt categorization methodology.
For preparation, an experiment folder should be prepared, contain a `config.yaml` for all the experiment configs.
Step1: Load the dataset
the dataset is a mixed sample of normal and malicious prompts.
"""
import argparse
import yaml
import os
from src.classification.dataset_construction import sample_data
import pandas as pd
import time
import os
from sklearn.metrics import recall_score, confusion_matrix
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Sample data based on configuration in experiment folder.')
parser.add_argument('experiment_folder', type=str, help='Path to the experiment folder.')
args = parser.parse_args()
experiment_folder = args.experiment_folder
# Construct the path to the config file
config_path = os.path.join(experiment_folder, 'config.yaml')
# Load the config file
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
# Extract the data config
data_config = config['data']
# Call the sample_data function
sample_data(
experiment_folder=experiment_folder,
**data_config
)
# load the model
from src.hookedLLM import HookedLLM # this is slow
hooked_llm = HookedLLM(**config['model'])
# load the train data
train_data = pd.read_csv(f'{experiment_folder}/data/train_data.csv')
positive_samples = train_data[train_data['label'] == 'malicious']['prompt'].tolist()
negative_samples = train_data[train_data['label'] == 'benign']['prompt'].tolist()
config['classifier']['positive_samples'] = positive_samples
config['classifier']['negative_samples'] = negative_samples
# configure training feature export
if config['export_features']:
config['classifier']['export_path'] = f'{experiment_folder}/features/train'
# construct the classifying direction
from src.classification.classifier import ActivationUsage
start_time = time.time()
classifier = ActivationUsage.from_config(config['classifier'], hooked_llm)
train_time = time.time() - start_time
# Assuming classifier and experiment_folder are defined elsewhere in your code
# score every prompt in the training data
start_time = time.time()
train_data['score'], train_data['pred'] = classifier.batch_score_and_classify(train_data['prompt'].tolist())
classify_train_time = time.time() - start_time
print(f"Scoring and classifying training data took {time.time() - start_time:.2f} seconds")
print(train_data)
output_folder = f'{experiment_folder}/stats'
os.makedirs(output_folder, exist_ok=True)
# save the scored data
start_time = time.time()
train_data.to_csv(f'{output_folder}/train_data.csv', index=False)
print(f"Saving training data took {time.time() - start_time:.2f} seconds")
# score, classify and save the test data
start_time = time.time()
test_data = pd.read_csv(f'{experiment_folder}/data/test_data.csv')
print(f"Loading test data took {time.time() - start_time:.2f} seconds")
start_time = time.time()
test_data['score'], test_data['pred'] = classifier.batch_score_and_classify(test_data['prompt'].tolist())
classify_test_time = time.time() - start_time
print(f"Scoring and classifying test data took {time.time() - start_time:.2f} seconds")
start_time = time.time()
test_data.to_csv(f'{output_folder}/test_data.csv', index=False)
print(f"Saving test data took {time.time() - start_time:.2f} seconds")
classification_threshold = classifier.classify_threshold
# if we want features exported, get out another classifier using the test set as training set, so we can get the test data features exported
if config['export_features']:
config['classifier']['export_path'] = f'{experiment_folder}/features/test'
positive_samples = test_data[test_data['label'] == 'malicious']['prompt'].tolist()
negative_samples = test_data[test_data['label'] == 'benign']['prompt'].tolist()
config['classifier']['positive_samples'] = positive_samples
config['classifier']['negative_samples'] = negative_samples
ActivationUsage.from_config(config['classifier'], hooked_llm)
def plot_and_save(data: pd.DataFrame, savepath: str, statspath: str):
# Calculate recall
y_true = data['label']
y_pred = data['pred']
# Calculate false positive rate and precision
tp, fn, fp, tn = confusion_matrix(y_true, y_pred, labels=['malicious', 'benign']).ravel()
fpr = fp / (fp + tn)
recall = tp / (tp + fn)
precision = tp / (tp + fp)
# Calculate F1 score
f1 = 2 * (precision * recall) / (precision + recall)
# Save statistics to CSV
stats = pd.DataFrame({
'Metric': ['Recall', 'False Positive Rate', 'Precision', 'F1 Score'],
'Value': [recall, fpr, precision, f1]
})
stats.to_csv(statspath, index=False)
start_time = time.time()
plot_and_save(train_data, f'{output_folder}/score_train_histogram.png', f'{output_folder}/train_stats.csv')
plot_and_save(test_data, f'{output_folder}/score_test_histogram.png', f'{output_folder}/test_stats.csv')
print(f"Saving stats and plot took {time.time() - start_time:.2f} seconds")
# save train and classify time as a csv
pd.DataFrame({
'Train Set Size': [len(train_data)],
'Epochs': [config['classifier']['NNCfg']['training']['epochs']],
'Train Time': [train_time],
'Average Classify Time': [(classify_train_time + classify_test_time) / (len(train_data) + len(test_data))],
}).to_csv(f'{output_folder}/time.csv', index=False)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。