代码拉取完成,页面将自动刷新
import os
import json
import torch
import deepspeed
import argparse
from shutil import copy
from pprint import pprint
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
from torch.utils.data import RandomSampler, DataLoader
from dataset import load_data, NerCollate
from config_utils import ConfigParser
from transformers import AutoModelForSeq2SeqLM
from transformers import AutoTokenizer
from transformers import (
Trainer,
TrainingArguments,
TrainerCallback,
TrainerState,
TrainerControl,
)
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
set_peft_model_state_dict,
)
def print_trainable_parameters(model):
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
num_params = param.numel()
if num_params == 0 and hasattr(param, "ds_numel"):
num_params = param.ds_numel
all_param += num_params
if param.requires_grad:
trainable_params += num_params
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}")
class PeftTrainer(Trainer):
def _save_checkpoint(self, _, trial, metrics=None):
""" Don't save base model, optimizer etc.
but create checkpoint folder (needed for saving adapter) """
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
run_dir = self._get_output_dir(trial=trial)
output_dir = os.path.join(run_dir, checkpoint_folder)
if metrics is not None and self.args.metric_for_best_model is not None:
metric_to_check = self.args.metric_for_best_model
if not metric_to_check.startswith("eval_"):
metric_to_check = f"eval_{metric_to_check}"
metric_value = metrics[metric_to_check]
operator = np.greater if self.args.greater_is_better else np.less
if (self.state.best_metric is None or self.state.best_model_checkpoint is None
or operator(metric_value, self.state.best_metric)):
self.state.best_metric = metric_value
self.state.best_model_checkpoint = output_dir
os.makedirs(output_dir, exist_ok=True)
if self.args.should_save:
self._rotate_checkpoints(use_mtime=True, output_dir=run_dir)
class PeftSavingCallback(TrainerCallback):
""" Correctly save PEFT model and not full model """
def _save(self, model, folder):
if folder is None:
folder = "./checkpoint/msra/train_trainer/"
peft_model_path = os.path.join(folder, "adapter_model")
model.save_pretrained(peft_model_path)
def on_save(self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
# checkpoint_folder = os.path.join(
# args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}"
# )
peft_model_path = os.path.join(args.output_dir, "adapter_model")
kwargs["model"].save_pretrained(peft_model_path)
return control
def on_train_end(self, args: TrainingArguments, state: TrainerState,
control: TrainerControl, **kwargs):
""" Save final best model adapter """
self._save(kwargs['model'], state.best_model_checkpoint)
def on_epoch_end(self, args: TrainingArguments, state: TrainerState,
control: TrainerControl, **kwargs):
""" Save intermediate model adapters in case of interrupted training """
# folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}")
self._save(kwargs['model'], args.output_dir)
def main():
args = {
"data_name": "msra",
"model_dir": "/root/autodl-tmp/chatglm-6b/",
"lora_r": 8,
"max_source_length": 128,
"max_target_length": 32,
"instruct_column": "instruct",
"query_column": "query",
"response_column": "answer",
"train_path": "data/msra/instruct_data/train.txt",
"dev_path": "data/msra/instruct_data/dev.txt",
"ignore_pad_token_for_loss": True,
"train_batch_size": 12,
"gradient_accumulation_steps": 1,
"save_dir": "./checkpoint/msra/train_trainer/",
"num_train_epochs": 1,
"local_rank": -1,
"log_steps": 10,
"save_steps": 400,
"deepspeed_json_path": "deepspeed.json",
}
config_parser = ConfigParser(args)
args = config_parser.parse_main()
pprint(vars(args))
tmp_dir = os.path.join(args.save_dir, "adapter_model")
if not os.path.exists(tmp_dir):
os.makedirs(tmp_dir)
with open(os.path.join(tmp_dir, "train_args.json"), "w") as fp:
json.dump(vars(args), fp, ensure_ascii=False, indent=2)
with open(args.deepspeed_jaon_path, "r") as fp:
deepspeed_json = json.load(fp)
model = AutoModelForSeq2SeqLM.from_pretrained(args.model_dir,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(args.model_dir, trust_remote_code=True)
config = LoraConfig(r=args.lora_r,
lora_alpha=32,
target_modules=["query_key_value"],
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM",
inference_mode=False,
)
model = get_peft_model(model, config)
model = model.cuda()
print_trainable_parameters(model)
for name, param in model.named_parameters():
if param.requires_grad == True:
print(name)
train_data = load_data(args.train_path)
ner_collate = NerCollate(args, tokenizer)
train_datset = ner_collate.collate_fn(train_data)
training_args = TrainingArguments(
output_dir=args.save_dir,
overwrite_output_dir=True,
learning_rate=deepspeed_json["optimizer"]["params"]["lr"],
adam_beta1=deepspeed_json["optimizer"]["params"]["betas"][0],
adam_beta2=deepspeed_json["optimizer"]["params"]["betas"][1],
weight_decay=deepspeed_json["optimizer"]["params"]["weight_decay"],
fp16=deepspeed_json["fp16"],
num_train_epochs=args.num_train_epochs,
per_device_train_batch_size=args.train_batch_size,
save_steps=args.save_steps,
logging_steps=args.log_steps,
save_total_limit=1,
deepspeed=args.deepspeed_json_path, # 设置 DeepSpeed 配置文件的路径
)
trainer = PeftTrainer(
model=model,
args=training_args,
train_dataset=train_data,
data_collator=ner_collate.collate_fn,
callbacks=[PeftSavingCallback],
)
trainer.train()
if __name__ == "__main__":
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。