代码拉取完成,页面将自动刷新
# coding=utf-8
# Copyright 2020 The TensorFlow GAN Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF-GAN: A Generative Adversarial Networks library for TensorFlow.
TF-GAN is a lightweight library for training and evaluating Generative
Adversarial Networks (GANs).
See the README on GitHub for further documentation.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import io
import sys
import unittest
from setuptools import find_packages
from setuptools import setup
from setuptools.command.install import install as InstallCommandBase
from setuptools.command.test import test as TestCommandBase
from setuptools.dist import Distribution
project_name = 'tensorflow-gan'
# Get version from version module.
with open('tensorflow_gan/python/version.py') as fp:
globals_dict = {}
exec(fp.read(), globals_dict) # pylint: disable=exec-used
__version__ = globals_dict['__version__']
version = __version__
class StderrWrapper(io.IOBase):
def write(self, *args, **kwargs):
return sys.stderr.write(*args, **kwargs)
def writeln(self, *args, **kwargs):
if args or kwargs:
sys.stderr.write(*args, **kwargs)
sys.stderr.write('\n')
class Test(TestCommandBase):
def run_tests(self):
# Import absl inside run, where dependencies have been loaded already.
from absl import app # pylint: disable=g-import-not-at-top
def main(_):
test_loader = unittest.TestLoader()
test_suite = test_loader.discover('tensorflow_gan', pattern='*_test.py')
stderr = StderrWrapper()
result = unittest.TextTestResult(stderr, descriptions=True, verbosity=2)
test_suite.run(result)
result.printErrors()
final_output = ('Tests run: {}. Errors: {} Failures: {}.'.format(
result.testsRun, len(result.errors), len(result.failures)))
header = '=' * len(final_output)
stderr.writeln(header)
stderr.writeln(final_output)
stderr.writeln(header)
if result.wasSuccessful():
return 0
else:
return 1
# Run inside absl.app.run to ensure flags parsing is done.
return app.run(main)
class BinaryDistribution(Distribution):
"""This class is needed in order to create OS specific wheels."""
def has_ext_modules(self):
return False
# TODO(joelshor): Maybe someday, when TF-GAN grows up, we can have our
# description be a `README.md` like `tensorflow_probability`.
DOCLINES = __doc__.split('\n')
setup(
name=project_name,
version=version,
description=DOCLINES[0],
long_description='\n'.join(DOCLINES[2:]),
author='Google Inc.',
author_email='packages@tensorflow.org',
url='http://github.com/tensorflow/gan',
license='Apache 2.0',
packages=find_packages(),
zip_safe=False,
distclass=BinaryDistribution,
cmdclass={
'test': Test,
'pip_pkg': InstallCommandBase,
},
install_requires=[
'tensorflow_hub>=0.2',
'tensorflow_probability>=0.7',
],
extras_require={
'tf': ['tensorflow>=1.12'],
'tensorflow-datasets': ['tensorflow-datasets>=0.5.0'],
},
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Developers',
'Intended Audience :: Education',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.4',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Software Development',
'Topic :: Software Development :: Libraries',
'Topic :: Software Development :: Libraries :: Python Modules',
],
keywords='tensorflow GAN generative model machine learning',
)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。