代码拉取完成,页面将自动刷新
同步操作将从 高桥凉介/machine-translation 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import argparse
import math
import logging
import os
import random
import torch
import torch.nn as nn
from itertools import chain
from tqdm import tqdm
from seq2seq import models, utils
from seq2seq.data.dictionary import Dictionary
from seq2seq.data.dataset import Seq2SeqDataset, BatchSampler
from seq2seq.models import ARCH_MODEL_REGISTRY, ARCH_CONFIG_REGISTRY
def get_args():
parser = argparse.ArgumentParser('Sequence to Sequence Model')
parser.add_argument('--seed', default=42, type=int, help='pseudo random number generator seed')
parser.add_argument('--distributed-world-size', default=torch.cuda.device_count(), help='distributed world size')
parser.add_argument('--distributed-backend', default='nccl', help='distributed backend')
# Add data arguments
parser.add_argument('--data', default='data-bin', help='path to data directory')
parser.add_argument('--source-lang', default=None, help='source language')
parser.add_argument('--target-lang', default=None, help='target language')
parser.add_argument('--max-tokens', default=16000, type=int, help='maximum number of tokens in a batch')
parser.add_argument('--batch-size', default=None, type=int, help='maximum number of sentences in a batch')
parser.add_argument('--num-workers', default=4, type=int, help='number of data workers')
# Add model arguments
parser.add_argument('--arch', default='transformer', choices=ARCH_MODEL_REGISTRY.keys(), help='model architecture')
# Add optimization arguments
parser.add_argument('--max-epoch', default=100, type=int, help='force stop training at specified epoch')
parser.add_argument('--clip-norm', default=0.1, type=float, help='clip threshold of gradients')
parser.add_argument('--lr', default=0.25, type=float, help='learning rate')
parser.add_argument('--momentum', default=0.99, type=float, help='momentum factor')
parser.add_argument('--weight-decay', default=0.0, type=float, help='weight decay')
parser.add_argument('--lr-shrink', default=0.1, type=float, help='learning rate shrink factor for annealing')
parser.add_argument('--min-lr', default=1e-5, type=float, help='minimum learning rate')
# Add checkpoint arguments
parser.add_argument('--log-file', default=None, help='path to save logs')
parser.add_argument('--save-dir', default='checkpoints', help='path to save checkpoints')
parser.add_argument('--restore-file', default='checkpoint_last.pt', help='filename to load checkpoint')
parser.add_argument('--save-interval', type=int, default=1, help='save a checkpoint every N epochs')
parser.add_argument('--no-save', action='store_true', help='don\'t save models or checkpoints')
parser.add_argument('--epoch-checkpoints', action='store_true', help='store all epoch checkpoints')
# Parse twice as model arguments are not known the first time
args, _ = parser.parse_known_args()
model_parser = parser.add_argument_group(argument_default=argparse.SUPPRESS)
ARCH_MODEL_REGISTRY[args.arch].add_args(model_parser)
args = parser.parse_args()
ARCH_CONFIG_REGISTRY[args.arch](args)
return args
def main(args):
if not torch.cuda.is_available():
raise NotImplementedError('Training on CPU is not supported.')
torch.manual_seed(args.seed)
torch.cuda.set_device(args.device_id)
utils.init_logging(args)
if args.distributed_world_size > 1:
torch.distributed.init_process_group(
backend=args.distributed_backend, init_method=args.distributed_init_method,
world_size=args.distributed_world_size, rank=args.distributed_rank)
# Load dictionaries
src_dict = Dictionary.load(os.path.join(args.data, 'dict.{}'.format(args.source_lang)))
logging.info('Loaded a source dictionary ({}) with {} words'.format(args.source_lang, len(src_dict)))
tgt_dict = Dictionary.load(os.path.join(args.data, 'dict.{}'.format(args.target_lang)))
logging.info('Loaded a target dictionary ({}) with {} words'.format(args.target_lang, len(tgt_dict)))
# Load datasets
def load_data(split):
return Seq2SeqDataset(
src_file=os.path.join(args.data, '{}.{}'.format(split, args.source_lang)),
tgt_file=os.path.join(args.data, '{}.{}'.format(split, args.target_lang)),
src_dict=src_dict, tgt_dict=tgt_dict)
train_dataset = load_data(split='train')
valid_dataset = load_data(split='valid')
# Build model and criterion
model = models.build_model(args, src_dict, tgt_dict).cuda()
logging.info('Built a model with {} parameters'.format(sum(p.numel() for p in model.parameters())))
criterion = nn.CrossEntropyLoss(ignore_index=src_dict.pad_idx, size_average=False).cuda()
# Build an optimizer and a learning rate schedule
optimizer = torch.optim.SGD(model.parameters(), args.lr, args.momentum, weight_decay=args.weight_decay, nesterov=True)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=0, min_lr=args.min_lr, factor=args.lr_shrink)
# Load last checkpoint if one exists
state_dict = utils.load_checkpoint(args, model, optimizer, lr_scheduler)
last_epoch = state_dict['last_epoch'] if state_dict is not None else -1
for epoch in range(last_epoch + 1, args.max_epoch):
train_loader = torch.utils.data.DataLoader(
train_dataset, num_workers=args.num_workers, collate_fn=train_dataset.collater,
batch_sampler=BatchSampler(
train_dataset, args.max_tokens, args.batch_size, args.distributed_world_size,
args.distributed_rank, shuffle=True, seed=args.seed))
model.train()
stats = {'loss': 0., 'lr': 0., 'num_tokens': 0., 'batch_size': 0., 'grad_norm': 0., 'clip': 0.}
progress_bar = tqdm(train_loader, desc='| Epoch {:03d}'.format(epoch), leave=False, disable=(args.distributed_rank != 0))
for i, sample in enumerate(progress_bar):
sample = utils.move_to_cuda(sample)
if len(sample) == 0:
continue
# Forward and backward pass
output, _ = model(sample['src_tokens'], sample['src_lengths'], sample['tgt_inputs'])
loss = criterion(output.view(-1, output.size(-1)), sample['tgt_tokens'].view(-1))
optimizer.zero_grad()
loss.backward()
# Reduce gradients across all GPUs
if args.distributed_world_size > 1:
utils.reduce_grads(model.parameters())
total_loss, num_tokens, batch_size = list(map(sum, zip(*utils.all_gather_list(
[loss.item(), sample['num_tokens'], len(sample['src_tokens'])]))))
else:
total_loss, num_tokens, batch_size = loss.item(), sample['num_tokens'], len(sample['src_tokens'])
# Normalize gradients by number of tokens and perform clipping
for param in model.parameters():
param.grad.data.div_(num_tokens)
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_norm)
optimizer.step()
# Update statistics for progress bar
stats['loss'] += total_loss / num_tokens / math.log(2)
stats['lr'] += optimizer.param_groups[0]['lr']
stats['num_tokens'] += num_tokens / len(sample['src_tokens'])
stats['batch_size'] += batch_size
stats['grad_norm'] += grad_norm
stats['clip'] += 1 if grad_norm > args.clip_norm else 0
progress_bar.set_postfix({key: '{:.4g}'.format(value / (i + 1)) for key, value in stats.items()}, refresh=True)
logging.info('Epoch {:03d}: {}'.format(epoch, ' | '.join(key + ' {:.4g}'.format(
value / len(progress_bar)) for key, value in stats.items())))
# Adjust learning rate based on validation loss
valid_loss = validate(args, model, criterion, valid_dataset, epoch)
lr_scheduler.step(valid_loss)
# Save checkpoints
if epoch % args.save_interval == 0:
utils.save_checkpoint(args, model, optimizer, lr_scheduler, epoch, valid_loss)
if optimizer.param_groups[0]['lr'] <= args.min_lr:
logging.info('Done training!')
break
def validate(args, model, criterion, valid_dataset, epoch):
valid_loader = torch.utils.data.DataLoader(
valid_dataset, num_workers=args.num_workers, collate_fn=valid_dataset.collater,
batch_sampler=BatchSampler(
valid_dataset, args.max_tokens, args.batch_size, args.distributed_world_size,
args.distributed_rank, shuffle=True, seed=args.seed))
model.eval()
stats = {'valid_loss': 0, 'num_tokens': 0, 'batch_size': 0}
progress_bar = tqdm(valid_loader, desc='| Epoch {:03d}'.format(epoch), leave=False)
for i, sample in enumerate(progress_bar):
sample = utils.move_to_cuda(sample)
if len(sample) == 0:
continue
with torch.no_grad():
output, attn_scores = model(sample['src_tokens'], sample['src_lengths'], sample['tgt_inputs'])
loss = criterion(output.view(-1, output.size(-1)), sample['tgt_tokens'].view(-1))
stats['valid_loss'] += loss.item() / sample['num_tokens'] / math.log(2)
stats['num_tokens'] += sample['num_tokens'] / len(sample['src_tokens'])
stats['batch_size'] += len(sample['src_tokens'])
progress_bar.set_postfix({key: '{:.3g}'.format(value / (i + 1)) for key, value in stats.items()}, refresh=True)
logging.info('Epoch {:03d}: {}'.format(epoch, ' | '.join(key + ' {:.3g}'.format(
value / len(progress_bar)) for key, value in stats.items())))
return stats['valid_loss'] / len(progress_bar)
if __name__ == '__main__':
args = get_args()
if args.distributed_world_size == 1:
args.distributed_rank = 0
args.device_id = 0
main(args)
else:
args.distributed_init_method = 'tcp://localhost:{port}'.format(port=random.randint(10000, 20000))
mp = torch.multiprocessing.get_context('spawn')
processes = []
for rank in range(args.distributed_world_size):
args.device_id = rank
args.distributed_rank = rank
processes.append(mp.Process(target=main, args=(args,)))
processes[rank].start()
for process in processes:
process.join()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。