1 Star 0 Fork 0

edwhelloworld/lane-detection

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
linefinder.h 4.76 KB
一键复制 编辑 原始数据 按行查看 历史
turtlebot 提交于 2013-09-04 17:05 . update
/*------------------------------------------------------------------------------------------*\
Lane Detection
General idea and some code modified from:
chapter 7 of Computer Vision Programming using the OpenCV Library.
by Robert Laganiere, Packt Publishing, 2011.
This program is free software; permission is hereby granted to use, copy, modify,
and distribute this source code, or portions thereof, for any purpose, without fee,
subject to the restriction that the copyright notice may not be removed
or altered from any source or altered source distribution.
The software is released on an as-is basis and without any warranties of any kind.
In particular, the software is not guaranteed to be fault-tolerant or free from failure.
The author disclaims all warranties with regard to this software, any use,
and any consequent failure, is purely the responsibility of the user.
Copyright (C) 2013 Jason Dorweiler, www.transistor.io
\*------------------------------------------------------------------------------------------*/
#if !defined LINEF
#define LINEF
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#define PI 3.1415926
class LineFinder {
private:
// original image
cv::Mat img;
// vector containing the end points
// of the detected lines
std::vector<cv::Vec4i> lines;
// accumulator resolution parameters
double deltaRho;
double deltaTheta;
// minimum number of votes that a line
// must receive before being considered
int minVote;
// min length for a line
double minLength;
// max allowed gap along the line
double maxGap;
// distance to shift the drawn lines down when using a ROI
int shift;
public:
// Default accumulator resolution is 1 pixel by 1 degree
// no gap, no mimimum length
LineFinder() : deltaRho(1), deltaTheta(PI/180), minVote(10), minLength(0.), maxGap(0.) {}
// Set the resolution of the accumulator
void setAccResolution(double dRho, double dTheta) {
deltaRho= dRho;
deltaTheta= dTheta;
}
// Set the minimum number of votes
void setMinVote(int minv) {
minVote= minv;
}
// Set line length and gap
void setLineLengthAndGap(double length, double gap) {
minLength= length;
maxGap= gap;
}
// set image shift
void setShift(int imgShift) {
shift = imgShift;
}
// Apply probabilistic Hough Transform
std::vector<cv::Vec4i> findLines(cv::Mat& binary) {
lines.clear();
cv::HoughLinesP(binary,lines,deltaRho,deltaTheta,minVote, minLength, maxGap);
return lines;
}
// Draw the detected lines on an image
void drawDetectedLines(cv::Mat &image, cv::Scalar color=cv::Scalar(255)) {
// Draw the lines
std::vector<cv::Vec4i>::const_iterator it2= lines.begin();
while (it2!=lines.end()) {
cv::Point pt1((*it2)[0],(*it2)[1]+shift);
cv::Point pt2((*it2)[2],(*it2)[3]+shift);
cv::line( image, pt1, pt2, color, 6 );
std::cout << " HoughP line: ("<< pt1 <<"," << pt2 << ")\n";
++it2;
}
}
// Eliminates lines that do not have an orientation equals to
// the ones specified in the input matrix of orientations
// At least the given percentage of pixels on the line must
// be within plus or minus delta of the corresponding orientation
std::vector<cv::Vec4i> removeLinesOfInconsistentOrientations(
const cv::Mat &orientations, double percentage, double delta) {
std::vector<cv::Vec4i>::iterator it= lines.begin();
// check all lines
while (it!=lines.end()) {
// end points
int x1= (*it)[0];
int y1= (*it)[1];
int x2= (*it)[2];
int y2= (*it)[3];
// line orientation + 90o to get the parallel line
double ori1= atan2(static_cast<double>(y1-y2),static_cast<double>(x1-x2))+PI/2;
if (ori1>PI) ori1= ori1-2*PI;
double ori2= atan2(static_cast<double>(y2-y1),static_cast<double>(x2-x1))+PI/2;
if (ori2>PI) ori2= ori2-2*PI;
// for all points on the line
cv::LineIterator lit(orientations,cv::Point(x1,y1),cv::Point(x2,y2));
int i,count=0;
for(i = 0, count=0; i < lit.count; i++, ++lit) {
float ori= *(reinterpret_cast<float *>(*lit));
// is line orientation similar to gradient orientation ?
if (std::min(fabs(ori-ori1),fabs(ori-ori2))<delta)
count++;
}
double consistency= count/static_cast<double>(i);
// set to zero lines of inconsistent orientation
if (consistency < percentage) {
(*it)[0]=(*it)[1]=(*it)[2]=(*it)[3]=0;
}
++it;
}
return lines;
}
};
#endif
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C++
1
https://gitee.com/edwhelloworld/lane-detection.git
git@gitee.com:edwhelloworld/lane-detection.git
edwhelloworld
lane-detection
lane-detection
master

搜索帮助