代码拉取完成,页面将自动刷新
# -*- coding: utf-8 -*-
import cv2
import sys
from PIL import Image
def CatchUsbVideo(window_name, camera_idx):
cv2.namedWindow(window_name)
# 视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头
cap = cv2.VideoCapture(camera_idx)
# 告诉OpenCV使用人脸识别分类器
classfier = cv2.CascadeClassifier("haarcascades/haarcascade_frontalface_alt2.xml")
# 识别出人脸后要画的边框的颜色,RGB格式
color = (0, 255, 0)
count = 0
while cap.isOpened():
ok, frame = cap.read() # 读取一帧数据
if not ok:
break
# 将当前帧转换成灰度图像
grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
if len(faceRects) > 0: # 大于0则检测到人脸
count = count + 1
return count
if __name__ == '__main__':
result = CatchUsbVideo("识别人脸区域", '2222.mp4')
if result > 0:
print('视频中有人!!')
else:
print('视频中没有人!!')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。