1 Star 0 Fork 8

Duanshuiliu2020/Optimization_Algorithm

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
python_Gradient_Descent.py 1.11 KB
一键复制 编辑 原始数据 按行查看 历史
GaoBoYu599 提交于 2018-12-31 10:59 . Add files via upload
import sympy
x,y = sympy.symbols('x y')
f = (x+y)**2 + (x+1)**2 + (y+3)**2;
fx = sympy.diff(f,x)
fy = sympy.diff(f,y)
print('fx:',fx)
print('fx:',fy)
# acc = float(input('最速/梯度下降精度:'))
# study_step = float(input('学习率:'))
acc = 0.0001 # 精度
study_step = 0.01 # 学习率
x_tmp = 10 # 起点
y_tmp = -1.5 # 起点
k = 0 # 迭代次数计数器
ans_tmp = [x_tmp,y_tmp]; # 迭代点的记录
while fx.evalf(subs={x:x_tmp,y:y_tmp})!=0 or fy.evalf(subs={x:x_tmp,y:y_tmp})!=0:
# print(fx.evalf(subs={x:x_tmp,y:y_tmp}))
gradient_tmp = [ study_step*fx.evalf(subs={x:x_tmp,y:y_tmp}),\
study_step*fy.evalf(subs={x:x_tmp,y:y_tmp}) ]
ans_tmp = [x_tmp-gradient_tmp[0], y_tmp-gradient_tmp[1]]
acc_tmp = sympy.sqrt( (ans_tmp[0]-x_tmp)**2 + (ans_tmp[1]-y_tmp)**2 )
if acc_tmp < acc:
f_end = f.evalf(subs={x:ans_tmp[0],y:ans_tmp[1]})
print('极值坐标为:(%.5f,%.5f,%.5f)'%(ans_tmp[0],ans_tmp[1],f_end))
print('迭代次数:%d'%(k))
break
x_tmp = ans_tmp[0]
y_tmp = ans_tmp[1]
k = k + 1
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Matlab
1
https://gitee.com/duanshuiliu2020/Optimization_Algorithm.git
git@gitee.com:duanshuiliu2020/Optimization_Algorithm.git
duanshuiliu2020
Optimization_Algorithm
Optimization_Algorithm
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385