代码拉取完成,页面将自动刷新
from config import *
from crnn import FullCrnn, LiteCrnn, CRNNHandle
from psenet import PSENet, PSENetHandel
from angle_class import AangleClassHandle, shufflenet_v2_x0_5
from utils import draw_bbox, crop_rect, sorted_boxes, get_rotate_crop_image
from PIL import Image
import numpy as np
import cv2
import copy
from dbnet.dbnet_infer import DBNET
if det_model_type == "pse_mobilenetv2":
text_detect_net = PSENet(backbone=det_model_type.split("_")[-1], pretrained=False, result_num=6, scale=pse_scale)
text_handle = PSENetHandel(model_path, text_detect_net, pse_scale, gpu_id=GPU_ID)
elif det_model_type == "dbnet":
text_handle = DBNET(model_path, short_size=dbnet_short_size)
crnn_net = None
if crnn_type == "full_lstm" or crnn_type == "full_dense":
crnn_net = FullCrnn(32, 1, len(alphabet) + 1, nh, n_rnn=2, leakyRelu=False, lstmFlag=LSTMFLAG)
elif crnn_type == "lite_lstm" or crnn_type == "lite_dense":
crnn_net = LiteCrnn(32, 1, len(alphabet) + 1, nh, n_rnn=2, leakyRelu=False, lstmFlag=LSTMFLAG)
assert crnn_type is not None
crnn_handle = CRNNHandle(crnn_model_path, crnn_net, gpu_id=GPU_ID)
crnn_vertical_handle = None
if crnn_vertical_model_path is not None:
crnn_vertical_net = LiteCrnn(32, 1, len(alphabet) + 1, nh, n_rnn=2, leakyRelu=False, lstmFlag=True)
crnn_vertical_handle = CRNNHandle(crnn_vertical_model_path, crnn_vertical_net, gpu_id=GPU_ID)
assert angle_type in ["shufflenetv2_05"]
if angle_type == "shufflenetv2_05":
angle_net = shufflenet_v2_x0_5(num_classes=len(lable_map_dict), pretrained=False)
angle_handle = AangleClassHandle(angle_model_path, angle_net, gpu_id=GPU_ID)
def crnnRec(im, rects_re, leftAdjust=False, rightAdjust=False, alph=0.2, f=1.0):
"""
crnn模型,ocr识别
@@model,
@@converter,
@@im:Array
@@text_recs:text box
@@ifIm:是否输出box对应的img
"""
results = []
im = Image.fromarray(im)
for index, rect in enumerate(rects_re):
degree, w, h, cx, cy = rect
# partImg, newW, newH = rotate_cut_img(im, 90 + degree , cx, cy, w, h, leftAdjust, rightAdjust, alph)
partImg = crop_rect(im, ((cx, cy), (h, w), degree))
newW, newH = partImg.size
partImg_array = np.uint8(partImg)
#
if newH > 1.5 * newW:
partImg_array = np.rot90(partImg_array, 1)
# partImg = Image.fromarray(partImg_array).convert("RGB")
# partImg.save("./debug_im/{}.jpg".format(index))
angel_index = angle_handle.predict(partImg_array)
angel_class = lable_map_dict[angel_index]
# print(angel_class)
rotate_angle = rotae_map_dict[angel_class]
if rotate_angle != 0:
partImg_array = np.rot90(partImg_array, rotate_angle // 90)
partImg = Image.fromarray(partImg_array).convert("RGB")
#
# partImg.save("./debug_im/{}.jpg".format(index))
partImg_ = partImg.convert('L')
try:
if crnn_vertical_handle is not None and angel_class in ["shudao", "shuzhen"]:
simPred = crnn_vertical_handle.predict(partImg_)
else:
simPred = crnn_handle.predict(partImg_) ##识别的文本
except:
continue
if simPred.strip() != u'':
results.append({'cx': cx * f, 'cy': cy * f, 'text': simPred, 'w': newW * f, 'h': newH * f,
'degree': degree})
return results
def crnnRecWithBox(im, boxes_list):
"""
crnn模型,ocr识别
@@model,
@@converter,
@@im:Array
@@text_recs:text box
@@ifIm:是否输出box对应的img
"""
results = []
boxes_list = sorted_boxes(np.array(boxes_list))
for index, box in enumerate(boxes_list):
# rect = cv2.minAreaRect(box)
# degree, w, h, cx, cy = rect
# box = sorted_boxes(box)
tmp_box = copy.deepcopy(box)
partImg_array = get_rotate_crop_image(im, tmp_box.astype(np.float32))
# partImg = Image.fromarray(partImg_array).convert("RGB")
# partImg.save("./debug_im/{}.jpg".format(index))
angel_index = angle_handle.predict(partImg_array)
angel_class = lable_map_dict[angel_index]
# print(angel_class)
rotate_angle = rotae_map_dict[angel_class]
if rotate_angle != 0:
partImg_array = np.rot90(partImg_array, rotate_angle // 90)
partImg = Image.fromarray(partImg_array).convert("RGB")
#
# partImg.save("./debug_im/{}.jpg".format(index))
partImg_ = partImg.convert('L')
newW, newH = partImg.size
try:
if crnn_vertical_handle is not None and angel_class in ["shudao", "shuzhen"]:
simPred = crnn_vertical_handle.predict(partImg_)
else:
simPred = crnn_handle.predict(partImg_) ##识别的文本
except:
continue
if simPred.strip() != u'':
results.append({'cx': 0, 'cy': 0, 'text': simPred, 'w': newW, 'h': newH,
'degree': 0})
# results.append({ 'text': simPred, })
return results
def text_predict(img):
# img = cv2.imread(imgpath)
if det_model_type == "pse_mobilenetv2":
preds, boxes_list, rects_re, t = text_handle.predict(img, long_size=pse_long_size)
else:
boxes_list, score_list = text_handle.process(img)
# img2 = draw_bbox(img, boxes_list, color=(0, 255, 0))
# cv2.imwrite("debug_im/draw.jpg", img2)
# result = crnnRec(np.array(img), rects_re)
result = crnnRecWithBox(np.array(img), boxes_list)
return result
if __name__ == "__main__":
pass
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。