登录
注册
开源
企业版
高校版
搜索
帮助中心
使用条款
关于我们
开源
企业版
高校版
私有云
Gitee AI
NEW
我知道了
查看详情
登录
注册
代码拉取完成,页面将自动刷新
捐赠
捐赠前请先登录
取消
前往登录
扫描微信二维码支付
取消
支付完成
支付提示
将跳转至支付宝完成支付
确定
取消
Watch
不关注
关注所有动态
仅关注版本发行动态
关注但不提醒动态
1
Star
0
Fork
8
OneFlowTech
/
mmclassification
forked from
OpenMMLab
/
mmclassification
确定同步?
同步操作将从
OpenMMLab/mmclassification
强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
删除在远程仓库中不存在的分支和标签
同步 Wiki
(当前仓库的 wiki 将会被覆盖!)
取消
确定
代码
Issues
0
Pull Requests
0
Wiki
统计
流水线
服务
Gitee Pages
质量分析
Jenkins for Gitee
腾讯云托管
腾讯云 Serverless
悬镜安全
阿里云 SAE
Codeblitz
我知道了,不再自动展开
标签
标签名
描述
提交信息
操作
v1.0.0rc6
v1.0.0rc6(06/04/2023) Highlights - Support OOD datasets. - Support confusion matrix calculation and plot. - Support LeViT, XCiT, ViG and ConvNeXt-V2 backbone. New Features - Support Out-of-Distribution datasets like ImageNet-A,R,S,C. ([#1342](https://github.com/open-mmlab/mmclassification/pull/1342)) - Support XCiT Backbone. ([#1305](https://github.com/open-mmlab/mmclassification/pull/1305)) - Support calculate confusion matrix and plot it. ([#1287](https://github.com/open-mmlab/mmclassification/pull/1287)) - Support RetrieverRecall metric & Add ArcFace config ([#1316](https://github.com/open-mmlab/mmclassification/pull/1316)) - Add `ImageClassificationInferencer`. ([#1261](https://github.com/open-mmlab/mmclassification/pull/1261)) - Support InShop Dataset (Image Retrieval). ([#1019](https://github.com/open-mmlab/mmclassification/pull/1019)) - Support LeViT backbone. ([#1238](https://github.com/open-mmlab/mmclassification/pull/1238)) - Support VIG Backbone. ([#1304](https://github.com/open-mmlab/mmclassification/pull/1304)) - Support ConvNeXt-V2 backbone. ([#1294](https://github.com/open-mmlab/mmclassification/pull/1294)) Improvements - [Enhance] Add stochastic depth decay rule in resnet. ([#1363](https://github.com/open-mmlab/mmclassification/pull/1363)) - [Refactor] Update analysis tools and documentations. ([#1359](https://github.com/open-mmlab/mmclassification/pull/1359)) - [Refactor] Unify the `--out` and `--dump` in `tools/test.py`. ([#1307](https://github.com/open-mmlab/mmclassification/pull/1307)) - [Enhance] Enable to toggle whether Gem Pooling is trainable or not. ([#1246](https://github.com/open-mmlab/mmclassification/pull/1246)) - [Improve] Update registries of mmcls. ([#1306](https://github.com/open-mmlab/mmclassification/pull/1306)) - [Tool] Add metafile fill and validation tools. ([#1297](https://github.com/open-mmlab/mmclassification/pull/1297)) - [Improve] Remove useless EfficientnetV2 config files. ([#1300](https://github.com/open-mmlab/mmclassification/pull/1300)) Bug Fixes - Fix precise bn hook ([#1386](https://github.com/open-mmlab/mmclassification/pull/1386)) - Fix acc evalustion wait for long ([#1430](https://github.com/open-mmlab/mmclassification/pull/1430)) - Fix retrieval multi gpu bug ([#1319](https://github.com/open-mmlab/mmclassification/pull/1319)) - Fix error repvgg-deploy base config path. ([#1357](https://github.com/open-mmlab/mmclassification/pull/1357)) - Fix bug in test tools. ([#1309](https://github.com/open-mmlab/mmclassification/pull/1309)) Docs Update - Update Readme ([#1442](https://github.com/open-mmlab/mmclassification/pull/1442)) - Add NPU support page. ([#1437](https://github.com/open-mmlab/mmclassification/pull/1437)) - Translate some tools tutorials to Chinese. ([#1321](https://github.com/open-mmlab/mmclassification/pull/1321)) - Add Chinese translation for runtime.md. ([#1313](https://github.com/open-mmlab/mmclassification/pull/1313))
3ff80f5
2023-04-06 13:05
下载
v1.0.0rc5
v1.0.0rc5(30/12/2022) Highlights - Support EVA, RevViT, EfficientnetV2, CLIP, TinyViT and MixMIM backbones. - Reproduce the training accuracy of ConvNeXt and RepVGG. - Support multi-task training and testing. - Support Test-time Augmentation. New Features - [Feature] Add EfficientnetV2 Backbone. ([#1253](https://github.com/open-mmlab/mmclassification/pull/1253)) - [Feature] Support TTA and add `--tta` in `tools/test.py`. ([#1161](https://github.com/open-mmlab/mmclassification/pull/1161)) - [Feature] Support Multi-task. ([#1229](https://github.com/open-mmlab/mmclassification/pull/1229)) - [Feature] Add clip backbone. ([#1258](https://github.com/open-mmlab/mmclassification/pull/1258)) - [Feature] Add mixmim backbone with checkpoints. ([#1224](https://github.com/open-mmlab/mmclassification/pull/1224)) - [Feature] Add TinyViT for dev-1.x. ([#1042](https://github.com/open-mmlab/mmclassification/pull/1042)) - [Feature] Add some scripts for development. ([#1257](https://github.com/open-mmlab/mmclassification/pull/1257)) - [Feature] Support EVA. ([#1239](https://github.com/open-mmlab/mmclassification/pull/1239)) - [Feature] Implementation of RevViT. ([#1127](https://github.com/open-mmlab/mmclassification/pull/1127)) Improvements - [Reproduce] Reproduce RepVGG Training Accuracy. ([#1264](https://github.com/open-mmlab/mmclassification/pull/1264)) - [Enhance] Support ConvNeXt More Weights. ([#1240](https://github.com/open-mmlab/mmclassification/pull/1240)) - [Reproduce] Update ConvNeXt config files. ([#1256](https://github.com/open-mmlab/mmclassification/pull/1256)) - [CI] Update CI to test PyTorch 1.13.0. ([#1260](https://github.com/open-mmlab/mmclassification/pull/1260)) - [Project] Add ACCV workshop 1st Solution. ([#1245](https://github.com/open-mmlab/mmclassification/pull/1245)) - [Project] Add Example project. ([#1254](https://github.com/open-mmlab/mmclassification/pull/1254)) Bug Fixes - [Fix] Fix imports in transforms. ([#1255](https://github.com/open-mmlab/mmclassification/pull/1255)) - [Fix] Fix CAM visualization. ([#1248](https://github.com/open-mmlab/mmclassification/pull/1248)) - [Fix] Fix the requirements and lazy register mmcls models. ([#1275](https://github.com/open-mmlab/mmclassification/pull/1275))
c7ec630
2022-12-30 17:32
下载
v0.25.0
v0.25.0(06/12/2022) Highlights - Support MLU backend. New Features - Support MLU backend. ([#1159](https://github.com/open-mmlab/mmclassification/pull/1159)) - Support Activation Checkpointing for ConvNeXt. ([#1152](https://github.com/open-mmlab/mmclassification/pull/1152)) Improvements - Add `dist_train_arm.sh` for ARM device and update NPU results. ([#1218](https://github.com/open-mmlab/mmclassification/pull/1218)) Bug Fixes - Fix a bug caused `MMClsWandbHook` stuck. ([#1242](https://github.com/open-mmlab/mmclassification/pull/1242)) - Fix the redundant `device_ids` in `tools/test.py`. ([#1215](https://github.com/open-mmlab/mmclassification/pull/1215)) Docs Update - Add version banner and version warning in master docs. ([#1216](https://github.com/open-mmlab/mmclassification/pull/1216)) - Update NPU support doc. ([#1198](https://github.com/open-mmlab/mmclassification/pull/1198)) - Fixed typo in `pytorch2torchscript.md`. ([#1173](https://github.com/open-mmlab/mmclassification/pull/1173)) - Fix typo in `miscellaneous.md`. ([#1137](https://github.com/open-mmlab/mmclassification/pull/1137)) - further detail for the doc for `ClassBalancedDataset`. ([#901](https://github.com/open-mmlab/mmclassification/pull/901))
2495400
2022-12-06 18:25
下载
v1.0.0rc4
v1.0.0rc4(06/12/2022) Highlights - Upgrade API to get pre-defined models of MMClassification. See [#1236](https://github.com/open-mmlab/mmclassification/pull/1236) for more details. - Refactor BEiT backbone and support v1/v2 inference. See [#1144](https://github.com/open-mmlab/mmclassification/pull/1144). New Features - Support getting model from the name defined in the model-index file. ([#1236](https://github.com/open-mmlab/mmclassification/pull/1236)) Improvements - Support evaluate on both EMA and non-EMA models. ([#1204](https://github.com/open-mmlab/mmclassification/pull/1204)) - Refactor BEiT backbone and support v1/v2 inference. ([#1144](https://github.com/open-mmlab/mmclassification/pull/1144)) Bug Fixes - Fix `reparameterize_model.py` doesn't save meta info. ([#1221](https://github.com/open-mmlab/mmclassification/pull/1221)) - Fix dict update in BEiT. ([#1234](https://github.com/open-mmlab/mmclassification/pull/1234)) Docs Update - Update install tutorial. ([#1223](https://github.com/open-mmlab/mmclassification/pull/1223)) - Update MobileNetv2 & MobileNetv3 readme. ([#1222](https://github.com/open-mmlab/mmclassification/pull/1222)) - Add version selection in the banner. ([#1217](https://github.com/open-mmlab/mmclassification/pull/1217))
458ac4c
2022-12-06 18:00
下载
v1.0.0rc3
v1.0.0rc3(21/11/2022) Highlights - Add **Switch Recipe** Hook, Now we can modify training pipeline, mixup and loss settings during training, see [#1101](https://github.com/open-mmlab/mmclassification/pull/1101). - Add **TIMM and HuggingFace** wrappers. Now you can train/use models in TIMM/HuggingFace directly, see [#1102](https://github.com/open-mmlab/mmclassification/pull/1102). - Support **retrieval tasks**, see [#1055](https://github.com/open-mmlab/mmclassification/pull/1055). - Reproduce **mobileone** training accuracy. See [#1191](https://github.com/open-mmlab/mmclassification/pull/1191) New Features - Add checkpoints from EfficientNets NoisyStudent & L2. ([#1122](https://github.com/open-mmlab/mmclassification/pull/1122)) - Migrate CSRA head to 1.x. ([#1177](https://github.com/open-mmlab/mmclassification/pull/1177)) - Support RepLKnet backbone. ([#1129](https://github.com/open-mmlab/mmclassification/pull/1129)) - Add Switch Recipe Hook. ([#1101](https://github.com/open-mmlab/mmclassification/pull/1101)) - Add adan optimizer. ([#1180](https://github.com/open-mmlab/mmclassification/pull/1180)) - Support DaViT. ([#1105](https://github.com/open-mmlab/mmclassification/pull/1105)) - Support Activation Checkpointing for ConvNeXt. ([#1153](https://github.com/open-mmlab/mmclassification/pull/1153)) - Add TIMM and HuggingFace wrappers to build classifiers from them directly. ([#1102](https://github.com/open-mmlab/mmclassification/pull/1102)) - Add reduction for neck ([#978](https://github.com/open-mmlab/mmclassification/pull/978)) - Support HorNet Backbone for dev1.x. ([#1094](https://github.com/open-mmlab/mmclassification/pull/1094)) - Add arcface head. ([#926](https://github.com/open-mmlab/mmclassification/pull/926)) - Add Base Retriever and Image2Image Retriever for retrieval tasks. ([#1055](https://github.com/open-mmlab/mmclassification/pull/1055)) - Support MobileViT backbone. ([#1068](https://github.com/open-mmlab/mmclassification/pull/1068)) Improvements - [Enhance] Enhance ArcFaceClsHead. ([#1181](https://github.com/open-mmlab/mmclassification/pull/1181)) - [Refactor] Refactor to use new fileio API in MMEngine. ([#1176](https://github.com/open-mmlab/mmclassification/pull/1176)) - [Enhance] Reproduce mobileone training accuracy. ([#1191](https://github.com/open-mmlab/mmclassification/pull/1191)) - [Enhance] add deleting params info in swinv2. ([#1142](https://github.com/open-mmlab/mmclassification/pull/1142)) - [Enhance] Add more mobilenetv3 pretrains. ([#1154](https://github.com/open-mmlab/mmclassification/pull/1154)) - [Enhancement] RepVGG for YOLOX-PAI for dev-1.x. ([#1126](https://github.com/open-mmlab/mmclassification/pull/1126)) - [Improve] Speed up data preprocessor. ([#1064](https://github.com/open-mmlab/mmclassification/pull/1064)) Bug Fixes - Fix the torchserve. ([#1143](https://github.com/open-mmlab/mmclassification/pull/1143)) - Fix configs due to api refactor of `num_classes`. ([#1184](https://github.com/open-mmlab/mmclassification/pull/1184)) - Update mmcls2torchserve. ([#1189](https://github.com/open-mmlab/mmclassification/pull/1189)) - Fix for `inference_model` cannot get classes information in checkpoint. ([#1093](https://github.com/open-mmlab/mmclassification/pull/1093)) Docs Update - Add not-found page extension. ([#1207](https://github.com/open-mmlab/mmclassification/pull/1207)) - update visualization doc. ([#1160](https://github.com/open-mmlab/mmclassification/pull/1160)) - Support sort and search the Model Summary table. ([#1100](https://github.com/open-mmlab/mmclassification/pull/1100)) - Improve the ResNet model page. ([#1118](https://github.com/open-mmlab/mmclassification/pull/1118)) - update the readme of convnext. ([#1156](https://github.com/open-mmlab/mmclassification/pull/1156)) - Fix the installation docs link in README. ([#1164](https://github.com/open-mmlab/mmclassification/pull/1164)) - Improve ViT and MobileViT model pages. ([#1155](https://github.com/open-mmlab/mmclassification/pull/1155)) - Improve Swin Doc and Add Tabs enxtation. ([#1145](https://github.com/open-mmlab/mmclassification/pull/1145)) - Add MMEval projects link in README. ([#1162](https://github.com/open-mmlab/mmclassification/pull/1162)) - Add runtime configuration docs. ([#1128](https://github.com/open-mmlab/mmclassification/pull/1128)) - Add custom evaluation docs ([#1130](https://github.com/open-mmlab/mmclassification/pull/1130)) - Add custom pipeline docs. ([#1124](https://github.com/open-mmlab/mmclassification/pull/1124)) - Add MMYOLO projects link in MMCLS1.x. ([#1117](https://github.com/open-mmlab/mmclassification/pull/1117))
13ff394
2022-11-21 18:21
下载
v0.24.1
v0.24.1(31/10/2022) New Features - Support mmcls with NPU backend. ([#1072](https://github.com/open-mmlab/mmclassification/pull/1072)) Bug Fixes - Fix performance issue in convnext DDP train. ([#1098](https://github.com/open-mmlab/mmclassification/pull/1098))
8c63bb5
2022-11-01 14:19
下载
v1.0.0rc2
v1.0.0rc2(12/10/2022) New Features - Support DeiT3. ([#1065](https://github.com/open-mmlab/mmclassification/pull/1065)) Improvements - Update `analyze_results.py` for dev-1.x. ([#1071](https://github.com/open-mmlab/mmclassification/pull/1071)) - Get scores from inference api. ([#1070](https://github.com/open-mmlab/mmclassification/pull/1070)) Bug Fixes - Update requirements. ([#1083](https://github.com/open-mmlab/mmclassification/pull/1083)) Docs Update - Add 1x docs schedule. ([#1015](https://github.com/open-mmlab/mmclassification/pull/1015))
31c67ff
2022-10-12 16:52
下载
v0.24.0
v0.24.0(30/9/2022) Highlights - Support HorNet, EfficientFormerm, SwinTransformer V2 and MViT backbones. - Support Standford Cars dataset. New Features - Support HorNet Backbone. ([#1013](https://github.com/open-mmlab/mmclassification/pull/1013)) - Support EfficientFormer. ([#954](https://github.com/open-mmlab/mmclassification/pull/954)) - Support Stanford Cars dataset. ([#893](https://github.com/open-mmlab/mmclassification/pull/893)) - Support CSRA head. ([#881](https://github.com/open-mmlab/mmclassification/pull/881)) - Support Swin Transform V2. ([#799](https://github.com/open-mmlab/mmclassification/pull/799)) - Support MViT and add checkpoints. ([#924](https://github.com/open-mmlab/mmclassification/pull/924)) Improvements - \[Improve\] replace loop of progressbar in api/test. ([#878](https://github.com/open-mmlab/mmclassification/pull/878)) - \[Enhance\] RepVGG for YOLOX-PAI. ([#1025](https://github.com/open-mmlab/mmclassification/pull/1025)) - \[Enhancement\] Update VAN. ([#1017](https://github.com/open-mmlab/mmclassification/pull/1017)) - \[Refactor\] Re-write `get_sinusoid_encoding` from third-party implementation. ([#965](https://github.com/open-mmlab/mmclassification/pull/965)) - \[Improve\] Upgrade onnxsim to v0.4.0. ([#915](https://github.com/open-mmlab/mmclassification/pull/915)) - \[Improve\] Fixed typo in `RepVGG`. ([#985](https://github.com/open-mmlab/mmclassification/pull/985)) - \[Improve\] Using `train_step` instead of `forward` in PreciseBNHook ([#964](https://github.com/open-mmlab/mmclassification/pull/964)) - \[Improve\] Use `forward_dummy` to calculate FLOPS. ([#953](https://github.com/open-mmlab/mmclassification/pull/953)) Bug Fixes - Fix warning with `torch.meshgrid`. ([#860](https://github.com/open-mmlab/mmclassification/pull/860)) - Add matplotlib minimum version requriments. ([#909](https://github.com/open-mmlab/mmclassification/pull/909)) - val loader should not drop last by default. ([#857](https://github.com/open-mmlab/mmclassification/pull/857)) - Fix config.device bug in toturial. ([#1059](https://github.com/open-mmlab/mmclassification/pull/1059)) - Fix attenstion clamp max params ([#1034](https://github.com/open-mmlab/mmclassification/pull/1034)) - Fix device mismatch in Swin-v2. ([#976](https://github.com/open-mmlab/mmclassification/pull/976)) - Fix the output position of Swin-Transformer. ([#947](https://github.com/open-mmlab/mmclassification/pull/947)) Docs Update - Fix typo in config.md. ([#827](https://github.com/open-mmlab/mmclassification/pull/827)) - Add version for torchvision to avoide error. ([#903](https://github.com/open-mmlab/mmclassification/pull/903)) - Fixed typo for `--out-dir` option of analyze_results.py. ([#898](https://github.com/open-mmlab/mmclassification/pull/898)) - Refine the docstring of RegNet ([#935](https://github.com/open-mmlab/mmclassification/pull/935))
91b85bb
2022-09-30 18:06
下载
v1.0.0rc1
v1.0.0rc1(30/9/2022) New Features - Support MViT for MMCLS 1.x ([#1023](https://github.com/open-mmlab/mmclassification/pull/1023)) - Add ViT huge architecture. ([#1049](https://github.com/open-mmlab/mmclassification/pull/1049)) - Support EdgeNeXt for dev-1.x. ([#1037](https://github.com/open-mmlab/mmclassification/pull/1037)) - Support Swin Transformer V2 for MMCLS 1.x. ([#1029](https://github.com/open-mmlab/mmclassification/pull/1029)) - Add efficientformer Backbone for MMCls 1.x. ([#1031](https://github.com/open-mmlab/mmclassification/pull/1031)) - Add MobileOne Backbone For MMCls 1.x. ([#1030](https://github.com/open-mmlab/mmclassification/pull/1030)) - Support BEiT Transformer layer. ([#919](https://github.com/open-mmlab/mmclassification/pull/919)) Improvements - \[Refactor\] Fix visualization tools. ([#1045](https://github.com/open-mmlab/mmclassification/pull/1045)) - \[Improve\] Update benchmark scripts ([#1028](https://github.com/open-mmlab/mmclassification/pull/1028)) - \[Improve\] Update tools to enable `pin_memory` and `persistent_workers` by default. ([#1024](https://github.com/open-mmlab/mmclassification/pull/1024)) - \[CI\] Update circle-ci and github workflow. ([#1018](https://github.com/open-mmlab/mmclassification/pull/1018)) Bug Fixes - Fix verify dataset tool in 1.x. ([#1062](https://github.com/open-mmlab/mmclassification/pull/1062)) - Fix `loss_weight` in `LabelSmoothLoss`. ([#1058](https://github.com/open-mmlab/mmclassification/pull/1058)) - Fix the output position of Swin-Transformer. ([#947](https://github.com/open-mmlab/mmclassification/pull/947)) Docs Update - Auto generate model summary table. ([#1010](https://github.com/open-mmlab/mmclassification/pull/1010)) - Refactor new modules tutorial. ([#998](https://github.com/open-mmlab/mmclassification/pull/998))
38bea38
2022-09-30 17:39
下载
v1.0.0rc0
v1.0.0rc0(31/8/2022) MMClassification 1.0.0rc0 is the first version of MMClassification 1.x, a part of the OpenMMLab 2.0 projects. Built upon the new [training engine](https://github.com/open-mmlab/mmengine), MMClassification 1.x unifies the interfaces of dataset, models, evaluation, and visualization. And there are some BC-breaking changes. Please check [the migration tutorial](https://mmclassification.readthedocs.io/en/1.x/migration.html) for more details.
a009d29
2022-09-01 00:13
下载
v0.23.2
v0.23.2(28/7/2022) New Features - Support MPS device. ([#894](https://github.com/open-mmlab/mmclassification/pull/894)) Bug Fixes - Fix a bug in Albu which caused crashing. ([#918](https://github.com/open-mmlab/mmclassification/pull/918))
71ef7ba
2022-07-28 14:15
下载
v0.23.1
v0.23.1(2/6/2022) New Features - [Feature] Dedicated MMClsWandbHook for MMClassification (Weights and Biases Integration) ([#764](https://github.com/open-mmlab/mmclassification/pull/764)) Improvements - [Refactor] Use mdformat instead of markdownlint to format markdown. ([#844](https://github.com/open-mmlab/mmclassification/pull/844)) Bug Fixes - [Fix] Fix wrong `--local_rank`. Docs Update - [Docs] Update install tutorials. ([#854](https://github.com/open-mmlab/mmclassification/pull/854)) - [Docs] Fix wrong link in README. ([#835](https://github.com/open-mmlab/mmclassification/pull/835))
313d357
2022-06-02 21:22
下载
v0.23.0
v0.23.0(1/5/2022) New Features - Support DenseNet. ([#750](https://github.com/open-mmlab/mmclassification/pull/750)) - Support VAN. ([#739](https://github.com/open-mmlab/mmclassification/pull/739)) Improvements - Support training on IPU and add fine-tuning configs of ViT. ([#723](https://github.com/open-mmlab/mmclassification/pull/723)) Docs Update - New style API reference, and easier to use! Welcome [view it](https://mmclassification.readthedocs.io/en/master/api/models.html). ([#774](https://github.com/open-mmlab/mmclassification/pull/774))
7c5ddb1
2022-05-01 21:58
下载
v0.22.1
v0.22.1(15/4/2022) New Features - [Feature] Support resize relative position embedding in `SwinTransformer`. ([#749](https://github.com/open-mmlab/mmclassification/pull/749)) - [Feature] Add PoolFormer backbone and checkpoints. ([#746](https://github.com/open-mmlab/mmclassification/pull/746)) Improvements - [Enhance] Improve CPE performance by reduce memory copy. ([#762](https://github.com/open-mmlab/mmclassification/pull/762)) - [Enhance] Add extra dataloader settings in configs. ([#752](https://github.com/open-mmlab/mmclassification/pull/752))
29b882d
2022-04-15 20:10
下载
v0.22.0
v0.22.0(30/3/2022) Highlights - Support a series of CSP Network, such as CSP-ResNet, CSP-ResNeXt and CSP-DarkNet. - A new `CustomDataset` class to help you build dataset of yourself! - Support ConvMixer, RepMLP and new dataset - CUB dataset. New Features - [Feature] Add CSPNet and backbone and checkpoints ([#735](https://github.com/open-mmlab/mmclassification/pull/735)) - [Feature] Add `CustomDataset`. ([#738](https://github.com/open-mmlab/mmclassification/pull/738)) - [Feature] Add diff seeds to diff ranks. ([#744](https://github.com/open-mmlab/mmclassification/pull/744)) - [Feature] Support ConvMixer. ([#716](https://github.com/open-mmlab/mmclassification/pull/716)) - [Feature] Our `dist_train` & `dist_test` tools support distributed training on multiple machines. ([#734](https://github.com/open-mmlab/mmclassification/pull/734)) - [Feature] Add RepMLP backbone and checkpoints. ([#709](https://github.com/open-mmlab/mmclassification/pull/709)) - [Feature] Support CUB dataset. ([#703](https://github.com/open-mmlab/mmclassification/pull/703)) - [Feature] Support ResizeMix. ([#676](https://github.com/open-mmlab/mmclassification/pull/676)) Improvements - [Enhance] Use `--a-b` instead of `--a_b` in arguments. ([#754](https://github.com/open-mmlab/mmclassification/pull/754)) - [Enhance] Add `get_cat_ids` and `get_gt_labels` to KFoldDataset. ([#721](https://github.com/open-mmlab/mmclassification/pull/721)) - [Enhance] Set torch seed in `worker_init_fn`. ([#733](https://github.com/open-mmlab/mmclassification/pull/733)) Bug Fixes - [Fix] Fix the discontiguous output feature map of ConvNeXt. ([#743](https://github.com/open-mmlab/mmclassification/pull/743)) Docs Update - [Docs] Add brief installation steps in README for copy&paste. ([#755](https://github.com/open-mmlab/mmclassification/pull/755)) - [Docs] fix logo url link from mmocr to mmcls. ([#732](https://github.com/open-mmlab/mmclassification/pull/732))
349ec86
2022-03-31 01:37
下载
v0.21.0
v0.21.0(04/03/2022) Highlights - Support ResNetV1c and Wide-ResNet, and provide pre-trained models. - Support dynamic input shape for ViT-based algorithms. Now our ViT, DeiT, Swin-Transformer and T2T-ViT support forwarding with any input shape. - Reproduce training results of DeiT. And our DeiT-T and DeiT-S have higher accuracy comparing with the official weights. New Features - Add ResNetV1c. ([#692](https://github.com/open-mmlab/mmclassification/pull/692)) - Support Wide-ResNet. ([#715](https://github.com/open-mmlab/mmclassification/pull/715)) - Support gem pooling ([#677](https://github.com/open-mmlab/mmclassification/pull/677)) Improvements - Reproduce training results of DeiT. ([#711](https://github.com/open-mmlab/mmclassification/pull/711)) - Add ConvNeXt pretrain models on ImageNet-1k. ([#707](https://github.com/open-mmlab/mmclassification/pull/707)) - Support dynamic input shape for ViT-based algorithms. ([#706](https://github.com/open-mmlab/mmclassification/pull/706)) - Add `evaluate` function for ConcatDataset. ([#650](https://github.com/open-mmlab/mmclassification/pull/650)) - Enhance vis-pipeline tool. ([#604](https://github.com/open-mmlab/mmclassification/pull/604)) - Return code 1 if scripts runs failed. ([#694](https://github.com/open-mmlab/mmclassification/pull/694)) - Use PyTorch official `one_hot` to implement `convert_to_one_hot`. ([#696](https://github.com/open-mmlab/mmclassification/pull/696)) - Add a new pre-commit-hook to automatically add a copyright. ([#710](https://github.com/open-mmlab/mmclassification/pull/710)) - Add deprecation message for deploy tools. ([#697](https://github.com/open-mmlab/mmclassification/pull/697)) - Upgrade isort pre-commit hooks. ([#687](https://github.com/open-mmlab/mmclassification/pull/687)) - Use `--gpu-id` instead of `--gpu-ids` in non-distributed multi-gpu training/testing. ([#688](https://github.com/open-mmlab/mmclassification/pull/688)) - Remove deprecation. ([#633](https://github.com/open-mmlab/mmclassification/pull/633)) Bug Fixes - Fix Conformer forward with irregular input size. ([#686](https://github.com/open-mmlab/mmclassification/pull/686)) - Add `dist.barrier` to fix a bug in directory checking. ([#666](https://github.com/open-mmlab/mmclassification/pull/666))
2037260
2022-03-04 16:13
下载
v0.20.1
v0.20.1(07/02/2022) Bug Fixes - Fix the MMCV dependency version.
a7f8e96
2022-02-07 11:46
下载
v0.20.0
v0.20.0(30/01/2022) Highlights - Support K-fold cross-validation. The tutorial will be released later. - Support HRNet, ConvNeXt, Twins and EfficientNet. - Support model conversion from PyTorch to Core-ML by a tool. New Features - Support K-fold cross-validation. ([#563](https://github.com/open-mmlab/mmclassification/pull/563)) - Support HRNet and add pre-trained models. ([#660](https://github.com/open-mmlab/mmclassification/pull/660)) - Support ConvNeXt and add pre-trained models. ([#670](https://github.com/open-mmlab/mmclassification/pull/670)) - Support Twins and add pre-trained models. ([#642](https://github.com/open-mmlab/mmclassification/pull/642)) - Support EfficientNet and add pre-trained models.([#649](https://github.com/open-mmlab/mmclassification/pull/649)) - Support `features_only` option in `TIMMBackbone`. ([#668](https://github.com/open-mmlab/mmclassification/pull/668)) - Add conversion script from pytorch to Core-ML model. ([#597](https://github.com/open-mmlab/mmclassification/pull/597)) Improvements - New-style CPU training and inference. ([#674](https://github.com/open-mmlab/mmclassification/pull/674)) - Add setup multi-processing both in train and test. ([#671](https://github.com/open-mmlab/mmclassification/pull/671)) - Rewrite channel split operation in ShufflenetV2. ([#632](https://github.com/open-mmlab/mmclassification/pull/632)) - Deprecate the support for "python setup.py test". ([#646](https://github.com/open-mmlab/mmclassification/pull/646)) - Support single-label, softmax, custom eps by asymmetric loss. ([#609](https://github.com/open-mmlab/mmclassification/pull/609)) - Save class names in best checkpoint created by evaluation hook. ([#641](https://github.com/open-mmlab/mmclassification/pull/641)) Bug Fixes - Fix potential unexcepted behaviors if `metric_options` is not specified in multi-label evaluation. ([#647](https://github.com/open-mmlab/mmclassification/pull/647)) - Fix API changes in `pytorch-grad-cam>=1.3.7`. ([#656](https://github.com/open-mmlab/mmclassification/pull/656)) - Fix bug which breaks `cal_train_time` in `analyze_logs.py`. ([#662](https://github.com/open-mmlab/mmclassification/pull/662)) Docs Update - Update README in configs according to OpenMMLab standard. ([#672](https://github.com/open-mmlab/mmclassification/pull/672)) - Update installation guide and README. ([#624](https://github.com/open-mmlab/mmclassification/pull/624))
e0edffb
2022-01-31 12:00
下载
v0.19.0
v0.19.0(31/12/2021) Highlights - The feature extraction function has been enhanced. See [#593](https://github.com/open-mmlab/mmclassification/pull/593) for more details. - Provide the high-acc ResNet-50 training settings from [*ResNet strikes back*](https://arxiv.org/abs/2110.00476). - Reproduce the training accuracy of T2T-ViT & RegNetX, and provide self-training checkpoints. - Support DeiT & Conformer backbone and checkpoints. - Provide a CAM visualization tool based on [pytorch-grad-cam](https://github.com/jacobgil/pytorch-grad-cam), and detailed [user guide](https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#class-activation-map-visualization)! New Features - Support Precise BN. ([#401](https://github.com/open-mmlab/mmclassification/pull/401)) - Add CAM visualization tool. ([#577](https://github.com/open-mmlab/mmclassification/pull/577)) - Repeated Aug and Sampler Registry. ([#588](https://github.com/open-mmlab/mmclassification/pull/588)) - Add DeiT backbone and checkpoints. ([#576](https://github.com/open-mmlab/mmclassification/pull/576)) - Support LAMB optimizer. ([#591](https://github.com/open-mmlab/mmclassification/pull/591)) - Implement the conformer backbone. ([#494](https://github.com/open-mmlab/mmclassification/pull/494)) - Add the frozen function for Swin Transformer model. ([#574](https://github.com/open-mmlab/mmclassification/pull/574)) - Support using checkpoint in Swin Transformer to save memory. ([#557](https://github.com/open-mmlab/mmclassification/pull/557)) Improvements - [Reproduction] Reproduce RegNetX training accuracy. ([#587](https://github.com/open-mmlab/mmclassification/pull/587)) - [Reproduction] Reproduce training results of T2T-ViT. ([#610](https://github.com/open-mmlab/mmclassification/pull/610)) - [Enhance] Provide high-acc training settings of ResNet. ([#572](https://github.com/open-mmlab/mmclassification/pull/572)) - [Enhance] Set a random seed when the user does not set a seed. ([#554](https://github.com/open-mmlab/mmclassification/pull/554)) - [Enhance] Added `NumClassCheckHook` and unit tests. ([#559](https://github.com/open-mmlab/mmclassification/pull/559)) - [Enhance] Enhance feature extraction function. ([#593](https://github.com/open-mmlab/mmclassification/pull/593)) - [Enhance] Improve efficiency of precision, recall, f1_score and support. ([#595](https://github.com/open-mmlab/mmclassification/pull/595)) - [Enhance] Improve accuracy calculation performance. ([#592](https://github.com/open-mmlab/mmclassification/pull/592)) - [Refactor] Refactor `analysis_log.py`. ([#529](https://github.com/open-mmlab/mmclassification/pull/529)) - [Refactor] Use new API of matplotlib to handle blocking input in visualization. ([#568](https://github.com/open-mmlab/mmclassification/pull/568)) - [CI] Cancel previous runs that are not completed. ([#583](https://github.com/open-mmlab/mmclassification/pull/583)) - [CI] Skip build CI if only configs or docs modification. ([#575](https://github.com/open-mmlab/mmclassification/pull/575)) Bug Fixes - Fix test sampler bug. ([#611](https://github.com/open-mmlab/mmclassification/pull/611)) - Try to create a symbolic link, otherwise copy. ([#580](https://github.com/open-mmlab/mmclassification/pull/580)) - Fix a bug for multiple output in swin transformer. ([#571](https://github.com/open-mmlab/mmclassification/pull/571)) Docs Update - Update mmcv, torch, cuda version in Dockerfile and docs. ([#594](https://github.com/open-mmlab/mmclassification/pull/594)) - Add analysis&misc docs. ([#525](https://github.com/open-mmlab/mmclassification/pull/525)) - Fix docs build dependency. ([#584](https://github.com/open-mmlab/mmclassification/pull/584))
7dfc9e4
2021-12-31 12:55
下载
v0.18.0
Highlights - Support MLP-Mixer backbone and provide pre-trained checkpoints. - Add a tool to visualize the learning rate curve of the training phase. Welcome to use with the [tutorial](https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#learning-rate-schedule-visualization)! New Features - Add MLP Mixer Backbone. ([#528](https://github.com/open-mmlab/mmclassification/pull/528), [#539](https://github.com/open-mmlab/mmclassification/pull/539)) - Support positive weights in BCE. ([#516](https://github.com/open-mmlab/mmclassification/pull/516)) - Add a tool to visualize learning rate in each iterations. ([#498](https://github.com/open-mmlab/mmclassification/pull/498)) Improvements - Use CircleCI to do unit tests. ([#567](https://github.com/open-mmlab/mmclassification/pull/567)) - Focal loss for single label tasks. ([#548](https://github.com/open-mmlab/mmclassification/pull/548)) - Remove useless `import_modules_from_string`. ([#544](https://github.com/open-mmlab/mmclassification/pull/544)) - Rename config files according to the config name standard. ([#508](https://github.com/open-mmlab/mmclassification/pull/508)) - Use `reset_classifier` to remove head of timm backbones. ([#534](https://github.com/open-mmlab/mmclassification/pull/534)) - Support passing arguments to loss from head. ([#523](https://github.com/open-mmlab/mmclassification/pull/523)) - Refactor `Resize` transform and add `Pad` transform. ([#506](https://github.com/open-mmlab/mmclassification/pull/506)) - Update mmcv dependency version. ([#509](https://github.com/open-mmlab/mmclassification/pull/509)) Bug Fixes - Fix bug when using `ClassBalancedDataset`. ([#555](https://github.com/open-mmlab/mmclassification/pull/555)) - Fix a bug when using iter-based runner with 'val' workflow. ([#542](https://github.com/open-mmlab/mmclassification/pull/542)) - Fix interpolation method checking in `Resize`. ([#547](https://github.com/open-mmlab/mmclassification/pull/547)) - Fix a bug when load checkpoints in mulit-GPUs environment. ([#527](https://github.com/open-mmlab/mmclassification/pull/527)) - Fix an error on indexing scalar metrics in `analyze_result.py`. ([#518](https://github.com/open-mmlab/mmclassification/pull/518)) - Fix wrong condition judgment in `analyze_logs.py` and prevent empty curve. ([#510](https://github.com/open-mmlab/mmclassification/pull/510)) Docs Update - Fix vit config and model broken links. ([#564](https://github.com/open-mmlab/mmclassification/pull/564)) - Add abstract and image for every paper. ([#546](https://github.com/open-mmlab/mmclassification/pull/546)) - Add mmflow and mim in banner and readme. ([#543](https://github.com/open-mmlab/mmclassification/pull/543)) - Add schedule and runtime tutorial docs. ([#499](https://github.com/open-mmlab/mmclassification/pull/499)) - Add the top-5 acc in ResNet-CIFAR README. ([#531](https://github.com/open-mmlab/mmclassification/pull/531)) - Fix TOC of `visualization.md` and add example images. ([#513](https://github.com/open-mmlab/mmclassification/pull/513)) - Use docs link of other projects and add MMCV docs. ([#511](https://github.com/open-mmlab/mmclassification/pull/511))
f6076bf
2021-11-30 19:04
下载
下载
请输入验证码,防止盗链导致资源被占用
取消
下载
1
https://gitee.com/culture-studio/mmclassification.git
git@gitee.com:culture-studio/mmclassification.git
culture-studio
mmclassification
mmclassification
点此查找更多帮助
搜索帮助
Git 命令在线学习
如何在 Gitee 导入 GitHub 仓库
Git 仓库基础操作
企业版和社区版功能对比
SSH 公钥设置
如何处理代码冲突
仓库体积过大,如何减小?
如何找回被删除的仓库数据
Gitee 产品配额说明
GitHub仓库快速导入Gitee及同步更新
什么是 Release(发行版)
将 PHP 项目自动发布到 packagist.org
评论
仓库举报
回到顶部
登录提示
该操作需登录 Gitee 帐号,请先登录后再操作。
立即登录
没有帐号,去注册