代码拉取完成,页面将自动刷新
import argparse
import os
import random
import numpy as np
import torch
import torch.nn as nn
from sklearn.metrics import accuracy_score, classification_report, precision_recall_fscore_support
from sklearn.utils import shuffle
# from analysis import rocstories as rocstories_analysis
from datasets import semeval
from model_pytorch_cnn import DoubleHeadModel, load_openai_pretrained_model
from opt import OpenAIAdam
from text_utils import TextEncoder
from utils import (encode_dataset, iter_data,
ResultLogger, make_path)
from loss import MultipleChoiceLossCompute,ClassificationLossCompute
def transform_roc(X1, X2, X3):
n_batch = len(X1)
xmb = np.zeros((n_batch, 2, n_ctx, 2), dtype=np.int32)
mmb = np.zeros((n_batch, 2, n_ctx), dtype=np.float32)
start = encoder['_start_']
delimiter = encoder['_delimiter_']
for i, (x1, x2, x3), in enumerate(zip(X1, X2, X3)):
x12 = [start] + x1[:max_len] + [delimiter] + x2[:max_len] + [clf_token]
x13 = [start] + x1[:max_len] + [delimiter] + x3[:max_len] + [clf_token]
l12 = len(x12)
l13 = len(x13)
xmb[i, 0, :l12, 0] = x12
xmb[i, 1, :l13, 0] = x13
mmb[i, 0, :l12] = 1
mmb[i, 1, :l13] = 1
# Position information that is added to the input embeddings in the TransformerModel
xmb[:, :, :, 1] = np.arange(n_vocab + n_special, n_vocab + n_special + n_ctx)
return xmb, mmb
def transform_semeval(X1, X2):
n_batch = len(X1)
xmb = np.zeros((n_batch, n_ctx, 2), dtype=np.int32)
mmb = np.zeros((n_batch, n_ctx), dtype=np.float32)
start = encoder['_start_']
delimiter = encoder['_delimiter_']
for i, (x1, x2), in enumerate(zip(X1, X2)):
x12 = [start] + x1[:max_len] + [delimiter] + x2[:max_len] + [clf_token]
l12 = len(x12)
xmb[i, :l12, 0] = x12
mmb[i, :l12] = 1
# Position information that is added to the input embeddings in the TransformerModel
xmb[:, :, 1] = np.arange(n_vocab + n_special, n_vocab + n_special + n_ctx)
return xmb, mmb
def iter_apply(Xs, Ms, Ys):
# fns = [lambda x: np.concatenate(x, 0), lambda x: float(np.sum(x))]
logits = []
cost = 0
with torch.no_grad():
dh_model.eval()
for xmb, mmb, ymb in iter_data(Xs, Ms, Ys, n_batch=n_batch_train, truncate=False, verbose=True):
n = len(xmb)
XMB = torch.tensor(xmb, dtype=torch.long).to(device)
YMB = torch.tensor(ymb, dtype=torch.long).to(device)
MMB = torch.tensor(mmb).to(device)
_, clf_logits = dh_model(XMB)
clf_logits *= n
clf_losses = compute_loss_fct(XMB, YMB, MMB, clf_logits, only_return_losses=True)
clf_losses *= n
logits.append(clf_logits.to("cpu").numpy())
cost += clf_losses.sum().item()
logits = np.concatenate(logits, 0)
return logits, cost
def iter_predict(Xs, Ms):
logits = []
with torch.no_grad():
dh_model.eval()
for xmb, mmb in iter_data(Xs, Ms, n_batch=n_batch_train, truncate=False, verbose=True):
n = len(xmb)
XMB = torch.tensor(xmb, dtype=torch.long).to(device)
MMB = torch.tensor(mmb).to(device)
_, clf_logits = dh_model(XMB)
logits.append(clf_logits.to("cpu").numpy())
logits = np.concatenate(logits, 0)
return logits
def log(save_dir, desc):
global best_score
print("Logging")
tr_logits, tr_cost = iter_apply(trX[:n_valid], trM[:n_valid], trY[:n_valid])
va_logits, va_cost = iter_apply(vaX, vaM, vaY)
tr_cost = tr_cost / len(trY[:n_valid])
va_cost = va_cost / n_valid
tr_acc = accuracy_score(trY[:n_valid], np.argmax(tr_logits, 1)) * 100.
va_acc = accuracy_score(vaY, np.argmax(va_logits, 1)) * 100.
logger.log(n_epochs=n_epochs, n_updates=n_updates, tr_cost=tr_cost, va_cost=va_cost, tr_acc=tr_acc, va_acc=va_acc)
print('%d %d %.3f %.3f %.2f %.2f' % (n_epochs, n_updates, tr_cost, va_cost, tr_acc, va_acc))
print('Train:')
print(precision_recall_fscore_support(trY[:n_valid], np.argmax(tr_logits, 1), average='macro'))
print('Val:')
print(precision_recall_fscore_support(vaY, np.argmax(va_logits, 1), average='macro'))
def predict(dataset, submission_dir):
filename = filenames[dataset]
pred_fn = pred_fns[dataset]
label_decoder = label_decoders[dataset]
predictions = pred_fn(iter_predict(teX, teM))
if label_decoder is not None:
predictions = [label_decoder[prediction] for prediction in predictions]
path = os.path.join(submission_dir, filename)
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, 'w') as f:
f.write('{}\t{}\n'.format('index', 'prediction'))
for i, prediction in enumerate(predictions):
f.write('{}\t{}\n'.format(i, prediction))
def run_epoch():
for xmb, mmb, ymb in iter_data(*shuffle(trX, trM, trYt, random_state=np.random),
n_batch=n_batch_train, truncate=True, verbose=True):
global n_updates
dh_model.train()
XMB = torch.tensor(xmb, dtype=torch.long).to(device)
YMB = torch.tensor(ymb, dtype=torch.long).to(device)
MMB = torch.tensor(mmb).to(device)
lm_logits, clf_logits = dh_model(XMB)
compute_loss_fct(XMB, YMB, MMB, clf_logits, lm_logits)
n_updates += 1
if n_updates in [1000, 2000, 4000, 8000, 16000, 32000] and n_epochs == 0:
log(save_dir, desc)
argmax = lambda x: np.argmax(x, 1)
pred_fns = {
'rocstories': argmax,
}
filenames = {
'rocstories': 'ROCStories.tsv',
}
label_decoders = {
'rocstories': None,
}
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--desc', type=str, help="Description")
parser.add_argument('--dataset', type=str)
parser.add_argument('--log_dir', type=str, default='log/')
parser.add_argument('--save_dir', type=str, default='save/')
# parser.add_argument('--data_dir', type=str, default='data/restaurant')
parser.add_argument('--data_dir', type=str, default='data/laptop')
# parser.add_argument('--data_dir', type=str, default='data/twitter')
parser.add_argument('--submission_dir', type=str, default='submission/')
parser.add_argument('--analysis', action='store_true')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--n_iter', type=int, default=3)
parser.add_argument('--n_batch', type=int, default=8)
parser.add_argument('--max_grad_norm', type=int, default=1)
parser.add_argument('--lr', type=float, default=6.25e-5)
parser.add_argument('--lr_warmup', type=float, default=0.002)
parser.add_argument('--n_ctx', type=int, default=512)
parser.add_argument('--n_embd', type=int, default=768)
parser.add_argument('--n_head', type=int, default=12)
parser.add_argument('--n_layer', type=int, default=12)
parser.add_argument('--embd_pdrop', type=float, default=0.1)
parser.add_argument('--attn_pdrop', type=float, default=0.1)
parser.add_argument('--resid_pdrop', type=float, default=0.1)
parser.add_argument('--clf_pdrop', type=float, default=0.1)
parser.add_argument('--l2', type=float, default=0.01)
parser.add_argument('--vector_l2', action='store_true')
parser.add_argument('--opt', type=str, default='adam')
parser.add_argument('--afn', type=str, default='gelu')
parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
parser.add_argument('--encoder_path', type=str, default='model/encoder_bpe_40000.json')
parser.add_argument('--bpe_path', type=str, default='model/vocab_40000.bpe')
parser.add_argument('--n_transfer', type=int, default=12)
parser.add_argument('--lm_coef', type=float, default=0.5)
parser.add_argument('--b1', type=float, default=0.9)
parser.add_argument('--b2', type=float, default=0.999)
parser.add_argument('--e', type=float, default=1e-8)
parser.add_argument('--n_valid', type=int, default=374)
args = parser.parse_args()
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# Constants
dataset = args.dataset
n_ctx = args.n_ctx
save_dir = args.save_dir
desc = args.desc
data_dir = args.data_dir
log_dir = args.log_dir
submission_dir = args.submission_dir
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
print("device", device, "n_gpu", n_gpu)
logger = ResultLogger(path=os.path.join(log_dir, '{}.jsonl'.format(desc)), **args.__dict__)
text_encoder = TextEncoder(args.encoder_path, args.bpe_path)
encoder = text_encoder.encoder
n_vocab = len(text_encoder.encoder)
print("Encoding dataset...")
aaaa = semeval(data_dir)
((trX1, trX2, trY),
(vaX1, vaX2, vaY)) = encode_dataset(*aaaa, encoder=text_encoder)
encoder['_start_'] = len(encoder)
encoder['_delimiter_'] = len(encoder)
encoder['_classify_'] = len(encoder)
clf_token = encoder['_classify_']
n_special = 3
max_len = n_ctx // 2 - 2
n_ctx = min(max(
[len(x1[:max_len]) + len(x2[:max_len]) for x1, x2 in zip(trX1, trX2)]
+ [len(x1[:max_len]) + len(x2[:max_len]) for x1, x2 in zip(vaX1, vaX2)]
) + 3, n_ctx)
vocab = n_vocab + n_special + n_ctx
trX, trM = transform_semeval(trX1, trX2)
vaX, vaM = transform_semeval(vaX1, vaX2)
n_train = len(trY)
n_valid = len(vaY)
n_batch_train = args.n_batch * max(n_gpu, 1)
n_updates_total = (n_train // n_batch_train) * args.n_iter
dh_model = DoubleHeadModel(args, clf_token, 'inference', vocab, n_ctx)
criterion = nn.CrossEntropyLoss(reduce=False)
model_opt = OpenAIAdam(dh_model.parameters(),
lr=args.lr,
schedule=args.lr_schedule,
warmup=args.lr_warmup,
t_total=n_updates_total,
b1=args.b1,
b2=args.b2,
e=args.e,
l2=args.l2,
vector_l2=args.vector_l2,
max_grad_norm=args.max_grad_norm)
compute_loss_fct = ClassificationLossCompute(criterion,
criterion,
args.lm_coef,
model_opt)
load_openai_pretrained_model(dh_model.transformer, n_ctx=n_ctx, n_special=n_special, path='model/')
dh_model.to(device)
dh_model = nn.DataParallel(dh_model)
n_updates = 0
n_epochs = 0
if dataset != 'stsb':
trYt = trY
best_score = 0
for i in range(args.n_iter):
print("running epoch", i)
run_epoch()
n_epochs += 1
log(save_dir, desc)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。