代码拉取完成,页面将自动刷新
/* Functions needed for bootstrapping the gmp build, based on mini-gmp.
Copyright 2001, 2002, 2004, 2011, 2012 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any
later version.
or both in parallel, as here.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library. If not,
see https://www.gnu.org/licenses/. */
#include "mini-gmp/mini-gmp.c"
#define MIN(l,o) ((l) < (o) ? (l) : (o))
#define PTR(x) ((x)->_mp_d)
#define SIZ(x) ((x)->_mp_size)
#define xmalloc gmp_default_alloc
int
isprime (unsigned long int t)
{
unsigned long int q, r, d;
if (t < 32)
return (0xa08a28acUL >> t) & 1;
if ((t & 1) == 0)
return 0;
if (t % 3 == 0)
return 0;
if (t % 5 == 0)
return 0;
if (t % 7 == 0)
return 0;
for (d = 11;;)
{
q = t / d;
r = t - q * d;
if (q < d)
return 1;
if (r == 0)
break;
d += 2;
q = t / d;
r = t - q * d;
if (q < d)
return 1;
if (r == 0)
break;
d += 4;
}
return 0;
}
int
log2_ceil (int n)
{
int e;
assert (n >= 1);
for (e = 0; ; e++)
if ((1 << e) >= n)
break;
return e;
}
/* Set inv to the inverse of d, in the style of invert_limb, ie. for
udiv_qrnnd_preinv. */
void
mpz_preinv_invert (mpz_t inv, mpz_t d, int numb_bits)
{
mpz_t t;
int norm;
assert (SIZ(d) > 0);
norm = numb_bits - mpz_sizeinbase (d, 2);
assert (norm >= 0);
mpz_init_set_ui (t, 1L);
mpz_mul_2exp (t, t, 2*numb_bits - norm);
mpz_tdiv_q (inv, t, d);
mpz_set_ui (t, 1L);
mpz_mul_2exp (t, t, numb_bits);
mpz_sub (inv, inv, t);
mpz_clear (t);
}
/* Calculate r satisfying r*d == 1 mod 2^n. */
void
mpz_invert_2exp (mpz_t r, mpz_t a, unsigned long n)
{
unsigned long i;
mpz_t inv, prod;
assert (mpz_odd_p (a));
mpz_init_set_ui (inv, 1L);
mpz_init (prod);
for (i = 1; i < n; i++)
{
mpz_mul (prod, inv, a);
if (mpz_tstbit (prod, i) != 0)
mpz_setbit (inv, i);
}
mpz_mul (prod, inv, a);
mpz_tdiv_r_2exp (prod, prod, n);
assert (mpz_cmp_ui (prod, 1L) == 0);
mpz_set (r, inv);
mpz_clear (inv);
mpz_clear (prod);
}
/* Calculate inv satisfying r*a == 1 mod 2^n. */
void
mpz_invert_ui_2exp (mpz_t r, unsigned long a, unsigned long n)
{
mpz_t az;
mpz_init_set_ui (az, a);
mpz_invert_2exp (r, az, n);
mpz_clear (az);
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。