代码拉取完成,页面将自动刷新
同步操作将从 openKylin/perl 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
/* av.c
*
* Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
* 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
*
* You may distribute under the terms of either the GNU General Public
* License or the Artistic License, as specified in the README file.
*
*/
/*
* '...for the Entwives desired order, and plenty, and peace (by which they
* meant that things should remain where they had set them).' --Treebeard
*
* [p.476 of _The Lord of the Rings_, III/iv: "Treebeard"]
*/
/*
=head1 Array Manipulation Functions
*/
#include "EXTERN.h"
#define PERL_IN_AV_C
#include "perl.h"
void
Perl_av_reify(pTHX_ AV *av)
{
SSize_t key;
PERL_ARGS_ASSERT_AV_REIFY;
assert(SvTYPE(av) == SVt_PVAV);
if (AvREAL(av))
return;
#ifdef DEBUGGING
if (SvTIED_mg((const SV *)av, PERL_MAGIC_tied))
Perl_ck_warner_d(aTHX_ packWARN(WARN_DEBUGGING), "av_reify called on tied array");
#endif
key = AvMAX(av) + 1;
while (key > AvFILLp(av) + 1)
AvARRAY(av)[--key] = NULL;
while (key) {
SV * const sv = AvARRAY(av)[--key];
if (sv != &PL_sv_undef)
SvREFCNT_inc_simple_void(sv);
}
key = AvARRAY(av) - AvALLOC(av);
while (key)
AvALLOC(av)[--key] = NULL;
AvREIFY_off(av);
AvREAL_on(av);
}
/*
=for apidoc av_extend
Pre-extend an array. The C<key> is the index to which the array should be
extended.
=cut
*/
void
Perl_av_extend(pTHX_ AV *av, SSize_t key)
{
MAGIC *mg;
PERL_ARGS_ASSERT_AV_EXTEND;
assert(SvTYPE(av) == SVt_PVAV);
mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied);
if (mg) {
SV *arg1 = sv_newmortal();
sv_setiv(arg1, (IV)(key + 1));
Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(EXTEND), G_DISCARD, 1,
arg1);
return;
}
av_extend_guts(av,key,&AvMAX(av),&AvALLOC(av),&AvARRAY(av));
}
/* The guts of av_extend. *Not* for general use! */
void
Perl_av_extend_guts(pTHX_ AV *av, SSize_t key, SSize_t *maxp, SV ***allocp,
SV ***arrayp)
{
PERL_ARGS_ASSERT_AV_EXTEND_GUTS;
if (key < -1) /* -1 is legal */
Perl_croak(aTHX_
"panic: av_extend_guts() negative count (%" IVdf ")", (IV)key);
if (key > *maxp) {
SV** ary;
SSize_t tmp;
SSize_t newmax;
if (av && *allocp != *arrayp) {
ary = *allocp + AvFILLp(av) + 1;
tmp = *arrayp - *allocp;
Move(*arrayp, *allocp, AvFILLp(av)+1, SV*);
*maxp += tmp;
*arrayp = *allocp;
if (AvREAL(av)) {
while (tmp)
ary[--tmp] = NULL;
}
if (key > *maxp - 10) {
newmax = key + *maxp;
goto resize;
}
}
else {
if (*allocp) {
#ifdef Perl_safesysmalloc_size
/* Whilst it would be quite possible to move this logic around
(as I did in the SV code), so as to set AvMAX(av) early,
based on calling Perl_safesysmalloc_size() immediately after
allocation, I'm not convinced that it is a great idea here.
In an array we have to loop round setting everything to
NULL, which means writing to memory, potentially lots
of it, whereas for the SV buffer case we don't touch the
"bonus" memory. So there there is no cost in telling the
world about it, whereas here we have to do work before we can
tell the world about it, and that work involves writing to
memory that might never be read. So, I feel, better to keep
the current lazy system of only writing to it if our caller
has a need for more space. NWC */
newmax = Perl_safesysmalloc_size((void*)*allocp) /
sizeof(const SV *) - 1;
if (key <= newmax)
goto resized;
#endif
/* overflow-safe version of newmax = key + *maxp/5 */
newmax = *maxp / 5;
newmax = (key > SSize_t_MAX - newmax)
? SSize_t_MAX : key + newmax;
resize:
{
/* it should really be newmax+1 here, but if newmax
* happens to equal SSize_t_MAX, then newmax+1 is
* undefined. This means technically we croak one
* index lower than we should in theory; in practice
* its unlikely the system has SSize_t_MAX/sizeof(SV*)
* bytes to spare! */
MEM_WRAP_CHECK_s(newmax, SV*, "Out of memory during array extend");
}
#ifdef STRESS_REALLOC
{
SV ** const old_alloc = *allocp;
Newx(*allocp, newmax+1, SV*);
Copy(old_alloc, *allocp, *maxp + 1, SV*);
Safefree(old_alloc);
}
#else
Renew(*allocp,newmax+1, SV*);
#endif
#ifdef Perl_safesysmalloc_size
resized:
#endif
ary = *allocp + *maxp + 1;
tmp = newmax - *maxp;
if (av == PL_curstack) { /* Oops, grew stack (via av_store()?) */
PL_stack_sp = *allocp + (PL_stack_sp - PL_stack_base);
PL_stack_base = *allocp;
PL_stack_max = PL_stack_base + newmax;
}
}
else {
newmax = key < 3 ? 3 : key;
{
/* see comment above about newmax+1*/
MEM_WRAP_CHECK_s(newmax, SV*, "Out of memory during array extend");
}
Newx(*allocp, newmax+1, SV*);
ary = *allocp + 1;
tmp = newmax;
*allocp[0] = NULL; /* For the stacks */
}
if (av && AvREAL(av)) {
while (tmp)
ary[--tmp] = NULL;
}
*arrayp = *allocp;
*maxp = newmax;
}
}
}
/*
=for apidoc av_fetch
Returns the SV at the specified index in the array. The C<key> is the
index. If lval is true, you are guaranteed to get a real SV back (in case
it wasn't real before), which you can then modify. Check that the return
value is non-null before dereferencing it to a C<SV*>.
See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for
more information on how to use this function on tied arrays.
The rough perl equivalent is C<$myarray[$key]>.
=cut
*/
static bool
S_adjust_index(pTHX_ AV *av, const MAGIC *mg, SSize_t *keyp)
{
bool adjust_index = 1;
if (mg) {
/* Handle negative array indices 20020222 MJD */
SV * const ref = SvTIED_obj(MUTABLE_SV(av), mg);
SvGETMAGIC(ref);
if (SvROK(ref) && SvOBJECT(SvRV(ref))) {
SV * const * const negative_indices_glob =
hv_fetchs(SvSTASH(SvRV(ref)), NEGATIVE_INDICES_VAR, 0);
if (negative_indices_glob && isGV(*negative_indices_glob)
&& SvTRUE(GvSV(*negative_indices_glob)))
adjust_index = 0;
}
}
if (adjust_index) {
*keyp += AvFILL(av) + 1;
if (*keyp < 0)
return FALSE;
}
return TRUE;
}
SV**
Perl_av_fetch(pTHX_ AV *av, SSize_t key, I32 lval)
{
SSize_t neg;
SSize_t size;
PERL_ARGS_ASSERT_AV_FETCH;
assert(SvTYPE(av) == SVt_PVAV);
if (UNLIKELY(SvRMAGICAL(av))) {
const MAGIC * const tied_magic
= mg_find((const SV *)av, PERL_MAGIC_tied);
if (tied_magic || mg_find((const SV *)av, PERL_MAGIC_regdata)) {
SV *sv;
if (key < 0) {
if (!S_adjust_index(aTHX_ av, tied_magic, &key))
return NULL;
}
sv = sv_newmortal();
sv_upgrade(sv, SVt_PVLV);
mg_copy(MUTABLE_SV(av), sv, 0, key);
if (!tied_magic) /* for regdata, force leavesub to make copies */
SvTEMP_off(sv);
LvTYPE(sv) = 't';
LvTARG(sv) = sv; /* fake (SV**) */
return &(LvTARG(sv));
}
}
neg = (key < 0);
size = AvFILLp(av) + 1;
key += neg * size; /* handle negative index without using branch */
/* the cast from SSize_t to Size_t allows both (key < 0) and (key >= size)
* to be tested as a single condition */
if ((Size_t)key >= (Size_t)size) {
if (UNLIKELY(neg))
return NULL;
goto emptyness;
}
if (!AvARRAY(av)[key]) {
emptyness:
return lval ? av_store(av,key,newSV(0)) : NULL;
}
return &AvARRAY(av)[key];
}
/*
=for apidoc av_store
Stores an SV in an array. The array index is specified as C<key>. The
return value will be C<NULL> if the operation failed or if the value did not
need to be actually stored within the array (as in the case of tied
arrays). Otherwise, it can be dereferenced
to get the C<SV*> that was stored
there (= C<val>)).
Note that the caller is responsible for suitably incrementing the reference
count of C<val> before the call, and decrementing it if the function
returned C<NULL>.
Approximate Perl equivalent: C<splice(@myarray, $key, 1, $val)>.
See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for
more information on how to use this function on tied arrays.
=cut
*/
SV**
Perl_av_store(pTHX_ AV *av, SSize_t key, SV *val)
{
SV** ary;
PERL_ARGS_ASSERT_AV_STORE;
assert(SvTYPE(av) == SVt_PVAV);
/* S_regclass relies on being able to pass in a NULL sv
(unicode_alternate may be NULL).
*/
if (SvRMAGICAL(av)) {
const MAGIC * const tied_magic = mg_find((const SV *)av, PERL_MAGIC_tied);
if (tied_magic) {
if (key < 0) {
if (!S_adjust_index(aTHX_ av, tied_magic, &key))
return 0;
}
if (val) {
mg_copy(MUTABLE_SV(av), val, 0, key);
}
return NULL;
}
}
if (key < 0) {
key += AvFILL(av) + 1;
if (key < 0)
return NULL;
}
if (SvREADONLY(av) && key >= AvFILL(av))
Perl_croak_no_modify();
if (!AvREAL(av) && AvREIFY(av))
av_reify(av);
if (key > AvMAX(av))
av_extend(av,key);
ary = AvARRAY(av);
if (AvFILLp(av) < key) {
if (!AvREAL(av)) {
if (av == PL_curstack && key > PL_stack_sp - PL_stack_base)
PL_stack_sp = PL_stack_base + key; /* XPUSH in disguise */
do {
ary[++AvFILLp(av)] = NULL;
} while (AvFILLp(av) < key);
}
AvFILLp(av) = key;
}
else if (AvREAL(av))
SvREFCNT_dec(ary[key]);
ary[key] = val;
if (SvSMAGICAL(av)) {
const MAGIC *mg = SvMAGIC(av);
bool set = TRUE;
for (; mg; mg = mg->mg_moremagic) {
if (!isUPPER(mg->mg_type)) continue;
if (val) {
sv_magic(val, MUTABLE_SV(av), toLOWER(mg->mg_type), 0, key);
}
if (PL_delaymagic && mg->mg_type == PERL_MAGIC_isa) {
PL_delaymagic |= DM_ARRAY_ISA;
set = FALSE;
}
}
if (set)
mg_set(MUTABLE_SV(av));
}
return &ary[key];
}
/*
=for apidoc av_make
Creates a new AV and populates it with a list of SVs. The SVs are copied
into the array, so they may be freed after the call to C<av_make>. The new AV
will have a reference count of 1.
Perl equivalent: C<my @new_array = ($scalar1, $scalar2, $scalar3...);>
=cut
*/
AV *
Perl_av_make(pTHX_ SSize_t size, SV **strp)
{
AV * const av = MUTABLE_AV(newSV_type(SVt_PVAV));
/* sv_upgrade does AvREAL_only() */
PERL_ARGS_ASSERT_AV_MAKE;
assert(SvTYPE(av) == SVt_PVAV);
if (size) { /* "defined" was returning undef for size==0 anyway. */
SV** ary;
SSize_t i;
SSize_t orig_ix;
Newx(ary,size,SV*);
AvALLOC(av) = ary;
AvARRAY(av) = ary;
AvMAX(av) = size - 1;
AvFILLp(av) = -1;
/* avoid av being leaked if croak when calling magic below */
EXTEND_MORTAL(1);
PL_tmps_stack[++PL_tmps_ix] = (SV*)av;
orig_ix = PL_tmps_ix;
for (i = 0; i < size; i++) {
assert (*strp);
/* Don't let sv_setsv swipe, since our source array might
have multiple references to the same temp scalar (e.g.
from a list slice) */
SvGETMAGIC(*strp); /* before newSV, in case it dies */
AvFILLp(av)++;
ary[i] = newSV(0);
sv_setsv_flags(ary[i], *strp,
SV_DO_COW_SVSETSV|SV_NOSTEAL);
strp++;
}
/* disarm av's leak guard */
if (LIKELY(PL_tmps_ix == orig_ix))
PL_tmps_ix--;
else
PL_tmps_stack[orig_ix] = &PL_sv_undef;
}
return av;
}
/*
=for apidoc av_clear
Frees the all the elements of an array, leaving it empty.
The XS equivalent of C<@array = ()>. See also L</av_undef>.
Note that it is possible that the actions of a destructor called directly
or indirectly by freeing an element of the array could cause the reference
count of the array itself to be reduced (e.g. by deleting an entry in the
symbol table). So it is a possibility that the AV could have been freed
(or even reallocated) on return from the call unless you hold a reference
to it.
=cut
*/
void
Perl_av_clear(pTHX_ AV *av)
{
SSize_t extra;
bool real;
SSize_t orig_ix = 0;
PERL_ARGS_ASSERT_AV_CLEAR;
assert(SvTYPE(av) == SVt_PVAV);
#ifdef DEBUGGING
if (SvREFCNT(av) == 0) {
Perl_ck_warner_d(aTHX_ packWARN(WARN_DEBUGGING), "Attempt to clear deleted array");
}
#endif
if (SvREADONLY(av))
Perl_croak_no_modify();
/* Give any tie a chance to cleanup first */
if (SvRMAGICAL(av)) {
const MAGIC* const mg = SvMAGIC(av);
if (PL_delaymagic && mg && mg->mg_type == PERL_MAGIC_isa)
PL_delaymagic |= DM_ARRAY_ISA;
else
mg_clear(MUTABLE_SV(av));
}
if (AvMAX(av) < 0)
return;
if ((real = cBOOL(AvREAL(av)))) {
SV** const ary = AvARRAY(av);
SSize_t index = AvFILLp(av) + 1;
/* avoid av being freed when calling destructors below */
EXTEND_MORTAL(1);
PL_tmps_stack[++PL_tmps_ix] = SvREFCNT_inc_simple_NN(av);
orig_ix = PL_tmps_ix;
while (index) {
SV * const sv = ary[--index];
/* undef the slot before freeing the value, because a
* destructor might try to modify this array */
ary[index] = NULL;
SvREFCNT_dec(sv);
}
}
extra = AvARRAY(av) - AvALLOC(av);
if (extra) {
AvMAX(av) += extra;
AvARRAY(av) = AvALLOC(av);
}
AvFILLp(av) = -1;
if (real) {
/* disarm av's premature free guard */
if (LIKELY(PL_tmps_ix == orig_ix))
PL_tmps_ix--;
else
PL_tmps_stack[orig_ix] = &PL_sv_undef;
SvREFCNT_dec_NN(av);
}
}
/*
=for apidoc av_undef
Undefines the array. The XS equivalent of C<undef(@array)>.
As well as freeing all the elements of the array (like C<av_clear()>), this
also frees the memory used by the av to store its list of scalars.
See L</av_clear> for a note about the array possibly being invalid on
return.
=cut
*/
void
Perl_av_undef(pTHX_ AV *av)
{
bool real;
SSize_t orig_ix = PL_tmps_ix; /* silence bogus warning about possible unitialized use */
PERL_ARGS_ASSERT_AV_UNDEF;
assert(SvTYPE(av) == SVt_PVAV);
/* Give any tie a chance to cleanup first */
if (SvTIED_mg((const SV *)av, PERL_MAGIC_tied))
av_fill(av, -1);
real = cBOOL(AvREAL(av));
if (real) {
SSize_t key = AvFILLp(av) + 1;
/* avoid av being freed when calling destructors below */
EXTEND_MORTAL(1);
PL_tmps_stack[++PL_tmps_ix] = SvREFCNT_inc_simple_NN(av);
orig_ix = PL_tmps_ix;
while (key)
SvREFCNT_dec(AvARRAY(av)[--key]);
}
Safefree(AvALLOC(av));
AvALLOC(av) = NULL;
AvARRAY(av) = NULL;
AvMAX(av) = AvFILLp(av) = -1;
if(SvRMAGICAL(av)) mg_clear(MUTABLE_SV(av));
if (real) {
/* disarm av's premature free guard */
if (LIKELY(PL_tmps_ix == orig_ix))
PL_tmps_ix--;
else
PL_tmps_stack[orig_ix] = &PL_sv_undef;
SvREFCNT_dec_NN(av);
}
}
/*
=for apidoc av_create_and_push
Push an SV onto the end of the array, creating the array if necessary.
A small internal helper function to remove a commonly duplicated idiom.
=cut
*/
void
Perl_av_create_and_push(pTHX_ AV **const avp, SV *const val)
{
PERL_ARGS_ASSERT_AV_CREATE_AND_PUSH;
if (!*avp)
*avp = newAV();
av_push(*avp, val);
}
/*
=for apidoc av_push
Pushes an SV (transferring control of one reference count) onto the end of the
array. The array will grow automatically to accommodate the addition.
Perl equivalent: C<push @myarray, $val;>.
=cut
*/
void
Perl_av_push(pTHX_ AV *av, SV *val)
{
MAGIC *mg;
PERL_ARGS_ASSERT_AV_PUSH;
assert(SvTYPE(av) == SVt_PVAV);
if (SvREADONLY(av))
Perl_croak_no_modify();
if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) {
Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(PUSH), G_DISCARD, 1,
val);
return;
}
av_store(av,AvFILLp(av)+1,val);
}
/*
=for apidoc av_pop
Removes one SV from the end of the array, reducing its size by one and
returning the SV (transferring control of one reference count) to the
caller. Returns C<&PL_sv_undef> if the array is empty.
Perl equivalent: C<pop(@myarray);>
=cut
*/
SV *
Perl_av_pop(pTHX_ AV *av)
{
SV *retval;
MAGIC* mg;
PERL_ARGS_ASSERT_AV_POP;
assert(SvTYPE(av) == SVt_PVAV);
if (SvREADONLY(av))
Perl_croak_no_modify();
if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) {
retval = Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(POP), 0, 0);
if (retval)
retval = newSVsv(retval);
return retval;
}
if (AvFILL(av) < 0)
return &PL_sv_undef;
retval = AvARRAY(av)[AvFILLp(av)];
AvARRAY(av)[AvFILLp(av)--] = NULL;
if (SvSMAGICAL(av))
mg_set(MUTABLE_SV(av));
return retval ? retval : &PL_sv_undef;
}
/*
=for apidoc av_create_and_unshift_one
Unshifts an SV onto the beginning of the array, creating the array if
necessary.
A small internal helper function to remove a commonly duplicated idiom.
=cut
*/
SV **
Perl_av_create_and_unshift_one(pTHX_ AV **const avp, SV *const val)
{
PERL_ARGS_ASSERT_AV_CREATE_AND_UNSHIFT_ONE;
if (!*avp)
*avp = newAV();
av_unshift(*avp, 1);
return av_store(*avp, 0, val);
}
/*
=for apidoc av_unshift
Unshift the given number of C<undef> values onto the beginning of the
array. The array will grow automatically to accommodate the addition.
Perl equivalent: S<C<unshift @myarray, ((undef) x $num);>>
=cut
*/
void
Perl_av_unshift(pTHX_ AV *av, SSize_t num)
{
SSize_t i;
MAGIC* mg;
PERL_ARGS_ASSERT_AV_UNSHIFT;
assert(SvTYPE(av) == SVt_PVAV);
if (SvREADONLY(av))
Perl_croak_no_modify();
if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) {
Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(UNSHIFT),
G_DISCARD | G_UNDEF_FILL, num);
return;
}
if (num <= 0)
return;
if (!AvREAL(av) && AvREIFY(av))
av_reify(av);
i = AvARRAY(av) - AvALLOC(av);
if (i) {
if (i > num)
i = num;
num -= i;
AvMAX(av) += i;
AvFILLp(av) += i;
AvARRAY(av) = AvARRAY(av) - i;
}
if (num) {
SV **ary;
const SSize_t i = AvFILLp(av);
/* Create extra elements */
const SSize_t slide = i > 0 ? i : 0;
num += slide;
av_extend(av, i + num);
AvFILLp(av) += num;
ary = AvARRAY(av);
Move(ary, ary + num, i + 1, SV*);
do {
ary[--num] = NULL;
} while (num);
/* Make extra elements into a buffer */
AvMAX(av) -= slide;
AvFILLp(av) -= slide;
AvARRAY(av) = AvARRAY(av) + slide;
}
}
/*
=for apidoc av_shift
Removes one SV from the start of the array, reducing its size by one and
returning the SV (transferring control of one reference count) to the
caller. Returns C<&PL_sv_undef> if the array is empty.
Perl equivalent: C<shift(@myarray);>
=cut
*/
SV *
Perl_av_shift(pTHX_ AV *av)
{
SV *retval;
MAGIC* mg;
PERL_ARGS_ASSERT_AV_SHIFT;
assert(SvTYPE(av) == SVt_PVAV);
if (SvREADONLY(av))
Perl_croak_no_modify();
if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) {
retval = Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(SHIFT), 0, 0);
if (retval)
retval = newSVsv(retval);
return retval;
}
if (AvFILL(av) < 0)
return &PL_sv_undef;
retval = *AvARRAY(av);
if (AvREAL(av))
*AvARRAY(av) = NULL;
AvARRAY(av) = AvARRAY(av) + 1;
AvMAX(av)--;
AvFILLp(av)--;
if (SvSMAGICAL(av))
mg_set(MUTABLE_SV(av));
return retval ? retval : &PL_sv_undef;
}
/*
=for apidoc av_top_index
Returns the highest index in the array. The number of elements in the
array is S<C<av_top_index(av) + 1>>. Returns -1 if the array is empty.
The Perl equivalent for this is C<$#myarray>.
(A slightly shorter form is C<av_tindex>.)
=for apidoc av_len
Same as L</av_top_index>. Note that, unlike what the name implies, it returns
the highest index in the array, so to get the size of the array you need to use
S<C<av_len(av) + 1>>. This is unlike L</sv_len>, which returns what you would
expect.
=cut
*/
SSize_t
Perl_av_len(pTHX_ AV *av)
{
PERL_ARGS_ASSERT_AV_LEN;
return av_top_index(av);
}
/*
=for apidoc av_fill
Set the highest index in the array to the given number, equivalent to
Perl's S<C<$#array = $fill;>>.
The number of elements in the array will be S<C<fill + 1>> after
C<av_fill()> returns. If the array was previously shorter, then the
additional elements appended are set to NULL. If the array
was longer, then the excess elements are freed. S<C<av_fill(av, -1)>> is
the same as C<av_clear(av)>.
=cut
*/
void
Perl_av_fill(pTHX_ AV *av, SSize_t fill)
{
MAGIC *mg;
PERL_ARGS_ASSERT_AV_FILL;
assert(SvTYPE(av) == SVt_PVAV);
if (fill < 0)
fill = -1;
if ((mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied))) {
SV *arg1 = sv_newmortal();
sv_setiv(arg1, (IV)(fill + 1));
Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(STORESIZE), G_DISCARD,
1, arg1);
return;
}
if (fill <= AvMAX(av)) {
SSize_t key = AvFILLp(av);
SV** const ary = AvARRAY(av);
if (AvREAL(av)) {
while (key > fill) {
SvREFCNT_dec(ary[key]);
ary[key--] = NULL;
}
}
else {
while (key < fill)
ary[++key] = NULL;
}
AvFILLp(av) = fill;
if (SvSMAGICAL(av))
mg_set(MUTABLE_SV(av));
}
else
(void)av_store(av,fill,NULL);
}
/*
=for apidoc av_delete
Deletes the element indexed by C<key> from the array, makes the element
mortal, and returns it. If C<flags> equals C<G_DISCARD>, the element is
freed and NULL is returned. NULL is also returned if C<key> is out of
range.
Perl equivalent: S<C<splice(@myarray, $key, 1, undef)>> (with the
C<splice> in void context if C<G_DISCARD> is present).
=cut
*/
SV *
Perl_av_delete(pTHX_ AV *av, SSize_t key, I32 flags)
{
SV *sv;
PERL_ARGS_ASSERT_AV_DELETE;
assert(SvTYPE(av) == SVt_PVAV);
if (SvREADONLY(av))
Perl_croak_no_modify();
if (SvRMAGICAL(av)) {
const MAGIC * const tied_magic
= mg_find((const SV *)av, PERL_MAGIC_tied);
if ((tied_magic || mg_find((const SV *)av, PERL_MAGIC_regdata))) {
SV **svp;
if (key < 0) {
if (!S_adjust_index(aTHX_ av, tied_magic, &key))
return NULL;
}
svp = av_fetch(av, key, TRUE);
if (svp) {
sv = *svp;
mg_clear(sv);
if (mg_find(sv, PERL_MAGIC_tiedelem)) {
sv_unmagic(sv, PERL_MAGIC_tiedelem); /* No longer an element */
return sv;
}
return NULL;
}
}
}
if (key < 0) {
key += AvFILL(av) + 1;
if (key < 0)
return NULL;
}
if (key > AvFILLp(av))
return NULL;
else {
if (!AvREAL(av) && AvREIFY(av))
av_reify(av);
sv = AvARRAY(av)[key];
AvARRAY(av)[key] = NULL;
if (key == AvFILLp(av)) {
do {
AvFILLp(av)--;
} while (--key >= 0 && !AvARRAY(av)[key]);
}
if (SvSMAGICAL(av))
mg_set(MUTABLE_SV(av));
}
if(sv != NULL) {
if (flags & G_DISCARD) {
SvREFCNT_dec_NN(sv);
return NULL;
}
else if (AvREAL(av))
sv_2mortal(sv);
}
return sv;
}
/*
=for apidoc av_exists
Returns true if the element indexed by C<key> has been initialized.
This relies on the fact that uninitialized array elements are set to
C<NULL>.
Perl equivalent: C<exists($myarray[$key])>.
=cut
*/
bool
Perl_av_exists(pTHX_ AV *av, SSize_t key)
{
PERL_ARGS_ASSERT_AV_EXISTS;
assert(SvTYPE(av) == SVt_PVAV);
if (SvRMAGICAL(av)) {
const MAGIC * const tied_magic
= mg_find((const SV *)av, PERL_MAGIC_tied);
const MAGIC * const regdata_magic
= mg_find((const SV *)av, PERL_MAGIC_regdata);
if (tied_magic || regdata_magic) {
MAGIC *mg;
/* Handle negative array indices 20020222 MJD */
if (key < 0) {
if (!S_adjust_index(aTHX_ av, tied_magic, &key))
return FALSE;
}
if(key >= 0 && regdata_magic) {
if (key <= AvFILL(av))
return TRUE;
else
return FALSE;
}
{
SV * const sv = sv_newmortal();
mg_copy(MUTABLE_SV(av), sv, 0, key);
mg = mg_find(sv, PERL_MAGIC_tiedelem);
if (mg) {
magic_existspack(sv, mg);
{
I32 retbool = SvTRUE_nomg_NN(sv);
return cBOOL(retbool);
}
}
}
}
}
if (key < 0) {
key += AvFILL(av) + 1;
if (key < 0)
return FALSE;
}
if (key <= AvFILLp(av) && AvARRAY(av)[key])
{
if (SvSMAGICAL(AvARRAY(av)[key])
&& mg_find(AvARRAY(av)[key], PERL_MAGIC_nonelem))
return FALSE;
return TRUE;
}
else
return FALSE;
}
static MAGIC *
S_get_aux_mg(pTHX_ AV *av) {
MAGIC *mg;
PERL_ARGS_ASSERT_GET_AUX_MG;
assert(SvTYPE(av) == SVt_PVAV);
mg = mg_find((const SV *)av, PERL_MAGIC_arylen_p);
if (!mg) {
mg = sv_magicext(MUTABLE_SV(av), 0, PERL_MAGIC_arylen_p,
&PL_vtbl_arylen_p, 0, 0);
assert(mg);
/* sv_magicext won't set this for us because we pass in a NULL obj */
mg->mg_flags |= MGf_REFCOUNTED;
}
return mg;
}
SV **
Perl_av_arylen_p(pTHX_ AV *av) {
MAGIC *const mg = get_aux_mg(av);
PERL_ARGS_ASSERT_AV_ARYLEN_P;
assert(SvTYPE(av) == SVt_PVAV);
return &(mg->mg_obj);
}
IV *
Perl_av_iter_p(pTHX_ AV *av) {
MAGIC *const mg = get_aux_mg(av);
PERL_ARGS_ASSERT_AV_ITER_P;
assert(SvTYPE(av) == SVt_PVAV);
if (sizeof(IV) == sizeof(SSize_t)) {
return (IV *)&(mg->mg_len);
} else {
if (!mg->mg_ptr) {
IV *temp;
mg->mg_len = IVSIZE;
Newxz(temp, 1, IV);
mg->mg_ptr = (char *) temp;
}
return (IV *)mg->mg_ptr;
}
}
SV *
Perl_av_nonelem(pTHX_ AV *av, SSize_t ix) {
SV * const sv = newSV(0);
PERL_ARGS_ASSERT_AV_NONELEM;
if (!av_store(av,ix,sv))
return sv_2mortal(sv); /* has tie magic */
sv_magic(sv, NULL, PERL_MAGIC_nonelem, NULL, 0);
return sv;
}
/*
* ex: set ts=8 sts=4 sw=4 et:
*/
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。